ELC 4351: Digital Signal Processing

Liang (Leon) Dong

Electrical and Computer Engineering
Baylor University
liang_dong@baylor.edu
Discrete Fourier Transform

Discrete Fourier Transform

Fourier Transform and Discrete Fourier Transform

Fast Fourier Transform Algorithms

The Fourier Transform of Discrete-Time Aperiodic Signals

Analysis Equation

$$
X(\omega)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}, \quad \omega \in[-\pi, \pi) \text { or } \omega \in[0,2 \pi)
$$

Synthesis Equation

$$
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega
$$

$X(\omega)$ is periodic with period 2π.

The Discrete Fourier Transform (DFT)

N-point DFT.

Analysis Equation

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi \frac{k}{N} n}, \quad k=0,1,2, \ldots, N-1
$$

Synthesis Equation

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi \frac{k}{N} n}, \quad n=0,1,2, \ldots, N-1
$$

N samples of the Fourier transform at N equally spaced frequencies. $\omega_{k}=\frac{2 \pi k}{N}, k=0,1,2, \ldots, N-1$.

The Discrete Fourier Transform (DFT)

N-point DFT:

$$
\begin{aligned}
& \mathbf{X}=\mathbf{F x}
\end{aligned}
$$

where \mathbf{F} is the DFT matrix which can be calculated and stored given N.
N-point IDFT:

$$
\mathbf{x}=\mathbf{F}^{*} \mathbf{X}, \quad \mathbf{F}^{*}=\mathbf{F}^{-1}
$$

A Fast Algorithm for the DFT

Analysis Equation

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad k=0,1,2, \ldots, N-1
$$

Synthesis Equation

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}, \quad n=0,1,2, \ldots, N-1
$$

where, $W_{N}=e^{-j 2 \pi / N}$.

A Fast Algorithm for the DFT

Analysis Equation

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad k=0,1,2, \ldots, N-1
$$

To calculate one frequency sample (each k) in the analysis equation (direct Fourier transform), we need N complex multiplications and $N-1$ complex additions.

For all N frequency samples, we need a total of N^{2} complex multiplications and $N(N-1)$ complex additions.

A Fast Algorithm for the DFT

Analysis Equation

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad k=0,1,2, \ldots, N-1
$$

For all N frequency samples, we need a total of $4 N^{2}$ real multiplications and $N(4 N-2)$ real additions.

A Fast Algorithm for the DFT

Analysis Equation

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad k=0,1,2, \ldots, N-1
$$

The computation complexity of the DFT is proportional to N^{2}.

As a comparison, the computational complexity of the FFT is proportional to $N \log N$.

Periodicity of $W_{N}^{k n}$

Use the periodicity of the sequence $W_{N}^{k n}$ to reduce computation.

$$
W_{N}^{k N}=e^{-j \frac{2 \pi}{N} k N}=e^{-j 2 \pi k}=1
$$

$$
W_{N}^{k(N-n)}=W_{N}^{-k n}=\left(W_{N}^{k n}\right)^{*}
$$

(complex conjugate symmetry)

$$
\begin{aligned}
W_{N}^{k n}= & W_{N}^{k(n+N)}=W_{N}^{(k+N) n} \\
& (\text { periodicity })
\end{aligned}
$$

Decimation-in-Time Fast Fourier Transform (FFT)

Considering N an integer power of 2, i.e., $N=2^{\nu}$.

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{N-1} x(n) W_{N}^{n k}, k=0,1, \ldots, N-1 \\
& =\sum_{n \text { even }} x(n) W_{N}^{n k}+\sum_{n \text { odd }} x(n) W_{N}^{n k} \\
& =\sum_{r=0}^{N / 2-1} x(2 r) W_{N}^{2 r k}+\sum_{r=0}^{N / 2-1} x(2 r+1) W_{N}^{(2 r+1) k} \\
& =\sum_{r=0}^{N / 2-1} x(2 r)\left(W_{N}^{2}\right)^{r k}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x(2 r+1)\left(W_{N}^{2}\right)^{r k}
\end{aligned}
$$

Decimation-in-Time Fast Fourier Transform (FFT)

$$
W_{N}^{2}=e^{-2 j \frac{2 \pi}{N}}=e^{-j \frac{2 \pi}{N / 2}}=W_{N / 2}
$$

Therefore,

$$
\begin{aligned}
X(k) & =\sum_{G(k)}^{\sum_{r=0}^{N / 2-1} x(2 r)\left(W_{N}^{2}\right)^{r k}}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x(2 r+1)\left(W_{N}^{2}\right)^{r k} \\
& =\underbrace{\sum_{r=0}^{N / 2-1} x(2 r) W_{N / 2}^{r k}}_{H(k)}+W_{N}^{k} \underbrace{G(k)+W_{N}^{k} H(k)}_{\sum_{r=0}^{N / 2-1} x(2 r+1) W_{N / 2}^{r k}}
\end{aligned}
$$

$G(k)$ is an $(N / 2)$-point DFT of even samples $x(2 r)$;
$H(k)$ is an $(N / 2)$-point DFT of odd samples $x(2 r+1)$.

Decimation-in-Time Fast Fourier Transform (FFT)

Continue...

$$
\begin{aligned}
& G(k)=\sum_{l=0}^{N / 4-1} g(2 l) W_{N / 4}^{l k}+W_{N / 2}^{k} \sum_{(N / 4)-\text { point DFT }}^{N / 4-1} g(2 l+1) W_{N / 4}^{l k} \\
& H(k)=\sum_{(N / 4)-\text { point DFT }}^{\sum_{l=0}^{N / 4-1} h(2 l) W_{N / 4}^{l k}}+W_{N / 2}^{k} \underbrace{\sum_{l=0}^{N / 4-1} h(2 l+1) W_{N / 4}^{l k}}_{l=0}
\end{aligned}
$$

Decimation-in-Time Fast Fourier Transform (FFT)

Decimation-in-Time Fast Fourier Transform (FFT)

$$
\begin{aligned}
W_{N}^{N / 2} & =e^{-j \frac{2 \pi}{N} \frac{N}{2}}=e^{-j \pi}=-1 \\
W_{N}^{r+N / 2} & =W_{N}^{N / 2} W_{N}^{r}=-W_{N}^{r}
\end{aligned}
$$

Decimation-in-Time Fast Fourier Transform (FFT)

$x(\mathrm{n})$'s index n	binary
0	000
4	100
2	010
6	110
1	001
5	101
3	011
7	111

Decimation-in-Frequency Fast Fourier Transform (FFT)

