ELC 4351: Digital Signal Processing

Liang (Leon) Dong
Electrical and Computer Engineering
Baylor University
liang_dong@baylor.edu

Difference Equations

Discrete-time Systems Described by Difference Equations

A LTI system is characterized by its unit sample response $h(n)$.

The output $y(n)$ of the system for any given input $x(n)$ is determined by

$$
\begin{gathered}
y(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k) \\
y(n)=h(n) \otimes x(n)
\end{gathered}
$$

FIR systems vs. IIR systems

Recursive and Nonrecursive Discrete-time Systems
e.g., Cumulative average of signal $x(n)$

$$
y(n)=\frac{1}{n+1} \sum_{k=0}^{n} x(k)
$$

$$
\begin{aligned}
(n+1) y(n) & =\sum_{k=0}^{n-1} x(k)+x(n) \\
& =n y(n-1)+x(n) \\
y(n) & =\frac{n}{n+1} y(n-1)+\frac{1}{n+1} x(n)
\end{aligned}
$$

where $y\left(n_{0}-1\right)$ is the initial condition for the system at time $n=n_{0}$.

LTI Systems Characterized by Constant-Coefficient Difference Equations

A recursive system:

$$
y(n)=\alpha y(n-1)+x(n)
$$

where α is a constant.

$$
\begin{aligned}
y(0)= & \alpha y(-1)+x(0) \\
y(1)= & \alpha y(0)+x(1)=\alpha^{2} y(-1)+\alpha x(0)+x(1) \\
\vdots & \vdots \\
y(n)= & \alpha^{n+1} y(-1)+\sum_{k=0}^{n} \alpha^{k} x(n-k), \quad n \geq 0
\end{aligned}
$$

LTI Systems Characterized by Constant-Coefficient Difference Equations

$$
y(n)=\alpha^{n+1} y(-1)+\sum_{k=0}^{n} \alpha^{k} x(n-k), \quad n \geq 0
$$

1. The system is initially relaxed at time $n=0$, i.e., $y(-1)=0$.

Zero-state response or forced response

$$
y_{z s}(n)=\sum_{k=0}^{n} \alpha^{k} x(n-k), \quad n \geq 0
$$

2. The input $x(n)=0, \forall n$.

Zero-input response or natural response

$$
y_{z i}(n)=\alpha^{n+1} y(-1), \quad n \geq 0
$$

3. The total response of the system

$$
y(n)=y_{z s}(n)+y_{z i}(n)
$$

LTI Systems Characterized by Constant-Coefficient Difference Equations

For LTI systems, a general form of the input-output relationship.

$$
\begin{aligned}
& y(n)=-\sum_{k=1}^{N} a_{k} y(n-k)+\sum_{k=0}^{M} b_{k} x(n-k) \\
& \sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k), \quad a_{0} \equiv 1
\end{aligned}
$$

The integer N is the order of the difference equation or the order of the system.

A Linear System:

- The total response is equal to the sum of the zero-state and zero-input responses

$$
y(n)=y_{z s}(n)+y_{z i}(n)
$$

- The principle of superposition applies to the zero-state response.
- The principle of superposition applies to the zero-input response.

Solution of Linear Constant-Coefficient Difference

The direct solution

$$
y(n)=\underbrace{y_{h}(n)}_{\text {homogeneous solution }}+\underbrace{y_{p}(n)}_{\text {particular solution }}
$$

The Homogeneous Solution of A Difference Equation

The homogeneous difference equation:

$$
\sum_{k=0}^{N} \alpha_{k} y(n-k)=0
$$

We assume that the solution is in the form of an exponential, i.e., $y_{h}(n)=\lambda^{n}$.

Substituting this in the equation, we obtain the polynomial equation

$$
\begin{gathered}
\sum_{k=0}^{N} \alpha_{k} \lambda^{n-k}=0 \\
\lambda^{n-N} \underbrace{\left(\lambda^{N}+\alpha_{1} \lambda^{N-1}+\cdots+\alpha_{N-1} \lambda+\alpha_{N}\right)}_{\text {characteristic polynomial }}=0
\end{gathered}
$$

- The characteristic polynomial of the system has N roots: $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$.

If the N roots are distinct, the general solution to the homogeneous difference equation is

$$
y_{h}(n)=C_{1} \lambda_{1}^{n}+C_{2} \lambda_{2}^{n}+\cdots+C_{N} \lambda_{N}^{n}
$$

where $C_{1}, C_{2}, \ldots, C_{N}$ are weighting coefficients.

These coefficients are determined from the initial conditions of the system.
$y_{h}(n)$ is the zero-input response of the system.

If the characteristic polynomial contains multiple roots, e.g., λ_{1} is a root of multiplicity m, then

$$
y_{h}(n)=C_{1} \lambda_{1}^{n}+C_{2} n \lambda_{1}^{n}+\cdots+C_{m} n^{m-1} \lambda_{1}^{n}+C_{m+1} \lambda_{m+1}^{n}+\cdots+C_{N} \lambda_{M}^{n}
$$

The Particular Solution of A Difference Equation

The particular difference equation for a specific input signal $x(n)$:

$$
\sum_{k=0}^{N} a_{k} y_{p}(n-k)=\sum_{k=0}^{M} b_{k} x(n-k), \quad a_{0} \equiv 1
$$

Input Signal $x(n)$	Particular Solution $y_{p}(n)$
A	K
$A M^{n}$	$K M^{n}$
$A n^{M}$	$K_{0} n^{M}+K_{1} n^{M-1}+\cdots+K_{M}$
$A^{n} n^{M}$	$A^{n}\left(K_{0} n^{M}+K_{1} n^{M-1}+\cdots+K_{M}\right)$
$A \cos \omega_{0} n$	$K_{1} \cos \omega_{0} n+K_{2} \sin \omega_{0} n$
$A \sin \omega_{0} n$	$K_{1} \cos \omega_{0} n+K_{2} \sin \omega_{0} n$

$$
y(n)=y_{h}(n)+y_{p}(n)
$$

- The impulse response $h(n)$ is equal to the zero-state response of the system (the system is initially relaxed) when the input $x(n)=\delta(n)$.

$$
y_{z s}(n)=\sum_{k=0}^{n} h(k) x(n-k), \quad n \geq 0
$$

When $x(n)=\delta(n), y_{z s}(n)=h(n)$.

- If the excitation is an impulse, the particular solution is zero, since $x(n)=0, \forall n>0$. That is $y_{p}(n)=0$.

The response of the system to an impulse consists only of the solution to the homogeneous equations.
N th-order linear difference equation.

The solution of the homogeneous equation is

$$
y_{h}(n)=\sum_{k=1}^{N} C_{k} \lambda_{k}^{n}
$$

Hence, the impulse response of the system is

$$
h(n)=\sum_{k=1}^{N} C_{k} \lambda_{k}^{n}
$$

