Pattern Matching (Exact Matching)

Young-Rae Cho
Assistant Professor
Department of Computer Science
Baylor University

Overview

- Pattern Matching
 - Exhaustive Search
 - DFA Algorithm
 - KMP Algorithm
- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm
- Approximate Pattern Matching
- Pattern Finding
- Approximate Pattern Finding (Sequence Motif Finding)
Pattern Matching

- **Definition**
 - Given a text (string), finding all occurrences of a pattern (substring)
 - Given a DNA, RNA, or protein sequence, finding all occurrences of a specific repeat

- **Examples**
 - `ATGGTC TAGGTC CTAGGTGC`

- **Applications**
 1. Homolog search in BLAST
 2. Sequence motif search
 - Repeats (substrings, patterns) often represent sequence motifs
 - Functional domains are often associated with repeats
 - Evolutionary path can be traced by repeats

Terminology

- **Prefix**
 - `S[1 .. j]` is a prefix of a string `S[1 .. n]` where `j ≤ n`
 - `X` is a prefix of `Y` if `X·Z=Y` for some string `Z`

- **Suffix**
 - `S[i .. n]` is a suffix of a string `S[1 .. n]` where `1 ≤ i`
 - `X` is a suffix of `Y` if `Z·X=Y` for some string `Z`

- **Substring**
 - A string of consecutive letters from `S`
 - `S[i .. j]` is a substring of a string `S[1 .. n]` where `1 ≤ i` and `j ≤ n`
 - A substring of `S` is a prefix of a suffix of `S`

- **Empty String**
 - `S[i .. j]` is an empty string where `i > j`
Properties

- Proper Prefix, Proper Suffix, Proper Substring
 - The proper prefix, suffix, or substring of a string S is a prefix, suffix, or substring that is not the empty string nor S itself

- Main Properties
 - Reflexivity (But, not for proper prefix, proper suffix, proper substring)
 - Anti-symmetry (But, not for proper prefix, proper suffix, proper substring)
 - Transitivity

- Other Properties
 - If X is a suffix of Y, then X·Z is a suffix of Y·Z for some string Z
 - If X is a suffix of Z, Y is a suffix of Z, and |X|≤|Y|, then X is a suffix of Y

Formulation of Pattern Matching Problem

- Goal
 - Finding all occurrences of a substring (length-m) in a string (length-n)

- Input
 - A substring \(P = p_1 \cdot p_2 \cdot \ldots \cdot p_m \) and a string \(T = t_1 \cdot t_2 \cdot \ldots \cdot t_n \)

- Output
 - All positions \(1 \leq i \leq (n-m+1) \) such that the substring of \(T \) starting at \(i \) matches \(P \)
Naïve Approach

- Algorithm
 - Exhaustive search

```
NaiveMatching(T, P)
n ← length(T)
m ← length(P)
for i ← 1 to n − m + 1
  if P[1..m] = T[i..(i + m)]
    then print i
```

- Example
 - $T = CTGCATC$
 - $P = GCAT$

<table>
<thead>
<tr>
<th>CTGCATC</th>
<th>CTGCATC</th>
<th>CTCCATC</th>
<th>CTGCATC</th>
<th>CTGCATC</th>
<th>CTGCATC</th>
<th>CTGCATC</th>
<th>CTGCATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCAT</td>
<td>GCAT</td>
<td>GCAT</td>
<td>GCAT</td>
<td>GCAT</td>
<td>GCAT</td>
<td>GCAT</td>
<td>GCAT</td>
</tr>
</tbody>
</table>

- Runtime ?

Deterministic Finite Automata (1)

- Definition
 - A device involving states and transitions among them in response to inputs

- Finite Automata $M = (Q, q_0, A, \Sigma, \delta)$
 - Q: a finite set of states
 - q_0: a start state
 - A: a set of accepting states
 - Σ: a finite set of input characters
 - δ: transition function from $Q \times \Sigma$ into Q

- Acceptance
 - Automaton accepts the input string if it ends up in an accepting state
 - Automaton rejects the input string if it doesn’t end up in an accepting state
Deterministic Finite Automata (2)

- **Applications**
 - Lexical analysis of a compiler
 - System for verifying the correctness of circuits or protocols

- **Examples**
 - Verifying inputs
 - Constructing automata

- **Pattern Matching with DFA**
 1. Constructs an automaton for the substring (pattern) \(P \)
 2. Searches \(P \) by reading the string (text) \(T \) on the automaton

Constructing DFA (1)

- **Suffix Function**
 - Suffix function \(\sigma(X) \) for \(P \): a mapping to the length of the longest prefix of \(P \) that is a suffix of \(X \)
 - e.g., \(P = \text{"abc"}, \sigma(\text{"cbaca"}) = ?, \sigma(\text{"ccab"}) = ? \)

- **Process**
 - Given a substring (pattern) \(P \) with length \(m \)
 - Makes the set of states \(Q = \{0,1, ..., m\} \), with the state 0 as \(q_0 \), and the state \(m \) as the only accepting state
 - Defines the transition function \(\delta \) as
 \[
 \delta(q, a) = \sigma(P[1..q] \cdot a)
 \]
Constructing DFA (2)

- Example
 - $P=\text{"ababaa"}, \Sigma=\{a,b\}$

- Runtime?

Searching Pattern using DFA (1)

- Process
 - Given an input string T having the letters in Σ
 - Starts at the state q_0
 - Reads the string T, character by character, changing state after each character read

- Pattern Matching
 - Automaton finds the substring P from T if it reaches an accepting state

- Example
 - $P=\text{"ababaa"}, \Sigma=\{a,b\}$
 - $T=\text{"aababaababaababaa"}
Searching Pattern using DFA (2)

- Algorithm

\[
\text{AutomataMatching}(T, P, M) \\
\begin{align*}
u & \leftarrow \text{length}(T) \\
m & \leftarrow \text{length}(P) \\
q & \leftarrow q_0 \\
\text{for } i \leftarrow 1 \text{ to } n \\
q & \leftarrow \delta(q, T[i]) \\
\text{if } q \in A \\
& \text{ then print } (i - m + 1)
\end{align*}
\]

- Runtime ?

- Total Runtime of Pattern Matching with DFA ?

Pattern Shifting

- Backgrounds

\[
\begin{array}{cccccccccccc}
& b & a & c & b & a & b & a & b & a & b & c & b & a & b \\
T & s & & & & & & & & & & & & \\
\begin{array}{cccc}
& a & b & a & b & a & c & a & \end{array}
\]

\[
\begin{array}{cccccccccccc}
& b & a & c & b & a & b & a & b & a & b & a & b & c & b & a & b \\
T & s'=s+2 & & & & & & & & & & & & \\
\begin{array}{cccc}
& a & b & a & b & a & c & a & \end{array}
\]
\]

- \(T[1..n]\), \(P[1..m]\)
- Given \(P[1..q]\) (where \(q \leq m\)) matches \(T[(s+1)..(s+q)]\), what is the least shift \(s'\) (where \(s'>s\)) such that
 \[
P[1..k] = T[(s'+1)..(s'+k)] \text{ where } s'+k = s+q
\]
Prefix Function

- Prefix Function
 - Prefix function $\pi(q)$ for P: a mapping to the length of the longest prefix of P that is a proper suffix of $P[1..q]$

Example

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[i]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$\pi(i)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

$\pi(5) = 3$

$\pi(4) = 2$

$\pi(2) = 0$

Knuth-Morris-Pratt Algorithm (1)

Algorithm

```
KMP-MATCHING(T, P, $\pi$)
    n ← length(T)
    m ← length(P)
    q ← 0
    for $i ← 1$ to $n$
        while $q > 0$ and $P[q + 1] \neq T[i]$
            $q ← \pi[q]$
        if $P[q + 1] = T[i]$
            then $q ← q + 1$
        if $q = m$
            then print ($i - m + 1$) and $q ← \pi[q]$
```

Runtime ?
Knuth-Morris-Pratt Algorithm (2)

- Algorithm of Prefix Function

  ```
  PrefixFunction(P)
  m ← length(P)
  π[1] ← 0
  k ← 0
  for q ← 2 to m
    while k > 0 and P[k + 1] ≠ P[q]
      k ← π[k]
    if P[k + 1] = P[q]
      k ← k + 1
    π[q] ← k
  return π
  ```

- Runtime ?

- Total Runtime of KMP Algorithm ?

Overview

- Pattern Matching
 - Exhaustive Search
 - DFA Algorithm
 - KMP Algorithm

- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm

- Approximate Pattern Matching

- Pattern Finding

- Approximate Pattern Finding (Sequence Motif Finding)
Multiple Pattern Matching

- Motivation
 - Finding matches of multiple patterns from a text at the same time
 - Finding all occurrences of multiple patterns at the same time in a DNA or protein sequence improves efficiency for homolog search

- Examples
 - ATGGTCTAGGTCCCTAGTGTC
 - P = { GGTC, CTAG, TGGT }

Formulation of Multiple Pattern Matching Problem

- Goal
 - Finding all occurrences of any in a set of substrings (length-m) in a string (length-n)

- Input
 - A set of k substrings P_1, P_2, \ldots, P_k and a string $T = t_1 \cdot t_2 \cdot \ldots \cdot t_n$

- Output
 - All positions $1 \leq i \leq n$ such that a substring of T starting at i matches P_j where $1 \leq j \leq k$
Extension of Pattern Matching

- Extension of Naïve Approach
 - Naïve string matching k times
 - Runtime ?

- Extension of Other String Matching Algorithms
 - KMP string matching k times
 - Runtime ?

- Direction
 - Advanced data structure
 - Advanced algorithm

Prefix Tree (1)

- Prefix Tree
 - Data structure to manage a set of substrings (patterns), P
 - Each path from the root represents each pattern
 - Also called "keyword tree" or "trie"

- Features
 - Each edge is labeled with a character
 - Any two or more edges to child nodes from a parent node have different labels
 - Each node v is labeled as the concatenation of edge labels on the path from the root to v (the node label is denoted by $L(v)$)
 - For each $P_i \in P$, there is a node v such that $L(v) = P_i$
 - $L(v)$ for any leaf node v equals some P_j where $P_j \in P$
Prefix Tree (2)

- Example
 - \(P = \{ TG, ATG, TCA, TGAC \} \)

- Runtime of Prefix Tree Construction?

Extension of Finite Automata (1)

- Multiple String Matching with Finite Automata (Aho-Corasick Algorithm)
 1. Constructs an automaton for the set of substrings (patterns), \(P \)
 2. Searches all substrings in the string (text) \(T \) by the automaton

- Finite Automata, \(M=(Q, q_0, A, \Sigma, \delta) \), on a Prefix Tree
 - \(Q \) : the set of nodes in the prefix tree
 - \(q_0 \) : the root in the prefix tree
 - \(A \) : the nodes marked in the prefix tree
 - \(\Sigma \) : the set of all distinct characters in \(P \)
 - \(\delta \) : transition functions
 - goto functions \((g) \)
 - failure functions \((f) \)
Extension of Finite Automata (2)

- Goto Function
 - \(g(q_i, a) \): a mapping to the state entered from the current state \(q_i \)
 - by matching the target character \(a \)
 - If the edge \((q_i, q_j)\) is labeled by \(a \), and \(q_i \) is a parent node of \(q_j \) in the
 prefix tree, then \(g(q_i, a) = q_j \)
 - Otherwise, \(g(q_i, a) = \emptyset \), except \(g(q_0, a) = q_0 \)

- Failure Function
 - \(f(q_i) = \pi(L(q_i)) \): a mapping to the state of the longest prefix of
 some pattern in \(P \), which is a proper suffix of \(L(q_i) \)

Example of Finite Automata

- Example
 - \(P = \{ TG, ATG, TCA, TGAC \} \)
Searching Multiple Patterns by FA (1)

- **Process**
 - Given an input string T having the letters in Σ,
 - Starts at the state q_0,
 - Reads the string T, character by character, changing state after each character read.

- **Multiple String Matching**
 - Automaton finds a substring P_j in P from T if it reaches the accepting state corresponding to P_j.

- **Example**
 - $P = \{ \text{TG, ATG, TCA, TGAC} \}$
 - $T = \text{ATCATGTGAC}$

Searching Multiple Patterns by FA (2)

- **Algorithm**

```
AC-MULTIPLE-MATCHING(T, \{P_1, P_2, \ldots, P_k\}, M)
    n ← length(T)
    for j = 1 to k
        m_j ← length(P_j)
        q ← q_0
        for i = 1 to n
            while g(q, T[i]) = ∅
                q ← f(q)
            q ← g(q, T[i])
            if q = a_j ∈ A
                then print (i - m_j + 1)
```

- **Runtime ?**
Constructing Finite Automata (1)

- Process
 - Constructs the prefix tree for P
 - all nodes in the prefix tree $\rightarrow Q$
 - the root node $\rightarrow q_0$
 - Marks all accepting states for A
 - Makes goto function for each state
 - Makes failure function for each state as $f(q) = \pi(L(q))$

Constructing Finite Automata (2)

- Algorithm of Failure Function

```plaintext
FAILURE_FUNCTION(M, g)
Q $\leftarrow$ empty queue
for $a \in \Sigma$
  if $g(q_0, a) = q \neq q_0$
    $f(q) \leftarrow 0$ and enqueue(q, Q)
while $Q \neq \emptyset$
  $v$ $\leftarrow$ dequeue(Q)
  for $a \in \Sigma$
    if $g(v, a) = u \neq \emptyset$
      enqueue(u, Q) and $v \leftarrow f(v)$
    while $g(v, a) = \emptyset$
      $v \leftarrow f(v)$
    $f(u) \leftarrow g(v, a)$
return $f$
```

- Runtime ?

- Total Runtime of AC Algorithm ?
Suffix Tree (1)

- **Suffix Tree**
 - Data structure to manage a string (text), T
 - Each path from the root represents each suffix of T
 - Also called "collapsed keyword tree"

- **Features**
 - Each edge is labeled with a string (a substring of T)
 - All internal nodes have at least two outgoing edges
 ⇒ Similar to prefix trees, but edges that form a linear path are collapsed
 - Leaf nodes are labeled with the index of the pattern (starting position)

Suffix Tree (2)

- **Examples**
 - $T = \text{ATCATG}$
 - T
 - TCATG
 - CATG
 - ATG
 - TG
 - G

- **Runtime of Suffix Tree**
 - Construction ?
 - Naïve approach

(a) Keyword tree
(b) Suffix tree
Constructing Suffix Tree (1)

- Weiner’s Algorithm
 - Linear-time suffix tree construction algorithm
- Substring Function
 - Substring function \(\theta(i) \) for \(T \): a mapping to the position and length of the substring of \(T[(i+1) \ldots n] \) that matches the longest prefix of \(T[i \ldots n] \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T[i])</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>(\theta(i))</td>
<td>4/2</td>
<td>5/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

Constructing Suffix Tree (2)

- Process
 - Read each character in \(T \) backwards
 - Attach the suffix \(T[i \ldots n] \) to the nodes labeled with the position of \(\theta(i) \)
 - Converting the edge with the length of \(\theta(i) \), and adding new branches
 - Example, \(T = ATCATG \)
Multiple Matching with Suffix Tree

- Process
 - Build a suffix tree for T
 - Thread each pattern P_i where $1 \leq i \leq k$ through the suffix tree
 - If threading is complete, output all labels of leaf nodes

- Example of Threading
 - $T = \text{"ATGCATA\text{CATG}"}$
 - $P_i = \text{"ATG"}$

- Runtime?

Overview

- Pattern Matching
 - Exhaustive Search
 - DFA Algorithm
 - KMP Algorithm

- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm

- Approximate Pattern Matching
- Pattern Finding
- Approximate Pattern Finding (Sequence Motif Finding)
Exact Matching vs. Inexact Matching

- **Exact Matching**

 \[T = \text{agcctccgatgtaagtcatcgatgtaactattcgatgacctccctattacatcttacgatgtcataca} \]
 \[P = \text{"cgatgt"} \]

 \[T = \text{agcctccgatgtaagtcatcgatgtaactattcgatgacctccctattacatcttacgatgtcataca} \]

- **Inexact Matching (Approximate Matching)**

 \[T = \text{agcctccgatgtaagtcatcgatgtaactattcgatgacctccctattacatcttacgatgtcataca} \]
 \[P = \text{"cgatgt"} \]
 \[P = \text{"cgatgt"} \]
 \[P = \text{"cgatgt"} \]

Formulation of Approximate Matching Problem

- **Goal**
 - Finding all approximate occurrences of a substring (length-\(m\)) in a string (length-\(n\))

- **Input**
 - A substring \(P = p_1, \ldots, p_m\), a string \(T = t_1, \ldots, t_n\), and the maximum number mismatches, \(k\)

- **Output**
 - All positions \(1 \leq i \leq (n-m+1)\) such that \(P\) and the substring of \(T\) starting at \(i\) have at most \(k\) mismatches
Naïve Approach

- **Algorithm**
 - Exhaustive search

  ```
  APPROXIMATEMATCHING(T, P, k)
  n ← length(T)
  m ← length(P)
  for i ← 1 to n - m + 1
    mismatch ← 0
    for j ← 1 to m
      if T[i + j - 1] ≠ P[j]
        then mismatch ← mismatch + 1
    if mismatch ≤ k
      then print i
  ```

- **Runtime ?**

Dynamic Programming

- **Algorithm**
 - Count mismatches, \(D(i,j) \), between \(P[i] \) and \(T[j] \)
 - Find all positions \(i \) such that the number of mismatches between \(P[1..m] \) and \(T[l..(l+m-1)] \) is less than or equals to \(k \)

 \[
 D(i,j) = \begin{cases}
 D(i-1,j-1) + 0 & \text{if } P[i] = T[j] \\
 D(i-1,j-1) + 1 & \text{otherwise}
 \end{cases}
 \]

- **Example**
 - \(T = "AGCCTTGA" \), \(P = "GCAT" \), \(k=2 \)

- **Runtime ?**
Overview

- Pattern Matching
 - Exhaustive Search
 - FA Algorithm
 - KMP Algorithm

- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm

- Approximate Pattern Matching

- Pattern Finding

- Motif Finding (Approximate Pattern Finding)

Pattern Matching vs. Pattern Finding

- Pattern Matching
 - Given a set of known patterns (motifs),
 - Find all occurrences in a DNA or protein sequence
 - Determine function of the DNA or protein sequence

 $\text{agctccgatgtaagtcacatgtaatctcgatgtaacctaccttacctacagtacataca}$

 $p = \text{"cgatgt"}$

 $\text{agctccgatgtaagtcacatgtaatctcgatgtaacctaccttacctacagtacataca}$

- Pattern (Motif) Finding
 - Given a set of known DNA or protein sequences,
 - Find patterns (motifs) across the DNA or protein sequences
Example of Pattern Finding

- Example
 - "acgtacgt" occurs in all 5 sequences (100%)

- Challenges
 - We do not know how the pattern looks like ("random" patterns)
 - We do not know where the pattern is located in each gene sequence

Formulation of Pattern Finding Problem

- Goal
 - Finding all occurrences of substrings (length-m) that appear in all strings (length-n)

- Input
 - A set of k strings T_1, T_2, \ldots, T_k and the length of the substring, m

- Output
 - The set of starting position vectors, $s = (s_1, s_2, \ldots, s_k)$, of the substrings that appear in all k strings
Naïve Approach

Algorithm
- Exhaustive search among all possible \(s \)

\[
\text{NAIVEFINDING}(\{T_1, T_2, \ldots, T_k\}, n, m) \\
\text{for } s = (1, 1, \ldots, 1) \text{ to } (n - m + 1, \ldots, n - m + 1) \\
\text{if } T_1[s_1, \ldots, s_1 + m - 1] = T_2[s_2, \ldots, s_2 + m - 1] = \cdots = T_k[s_k, \ldots, s_k + m - 1] \\
\text{then print } s
\]

Runtime ?

Alternative Naïve Approach

Algorithm
- Exhaustive search among all possible combinations of characters
- Practical in biological applications

Search Tree
- Example where \(m=2 \) in DNA sequences

Runtime?
Anti-Monotonic Approach

- Anti-Monotonic Property
 - If a set (a string) violates a rule or a constraint (a pattern), then all super-sets (super-strings) violate it.

- Process of Pattern Finding
 - Finding the patterns (substrings) by increment of their length.
 - If a sub-pattern does not appear in all strings T_i where $1 \leq i \leq k$, do not process further its super-patterns.

Overview

- Pattern Matching
 - Exhaustive Search
 - FA Algorithm
 - KMP Algorithm

- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm

- Approximate Pattern Matching

- Pattern Finding

- **Motif Finding (Approximate Pattern Finding)**
Approximate Pattern Finding

- **Example**

 \[
 \begin{align*}
 T_1 &= \text{ctgatagncgtatcgctatccacgtacgtaggtctctgtgcgaatctabgcgttcaccccat} \\
 T_2 &= \text{agtactggtgtacatbtgatacgtacgphacaccggcaacctgaanccacgtcagaaccaccaggtgc} \\
 T_3 &= \text{aaacgtacgtgcaccctcttttctttctgctgctgcacaggcaggtgtatagacgaaaat} \\
 T_4 &= \text{agccctccgatgtagcatagctgtaactattacctgccacccctattacatcttacgcacgtataca} \\
 T_5 &= \text{ctgttatacaacgctactgggtatgctgttttgctgtagctcgatacgtacgtc}
 \end{align*}
 \]

 - "acgtacgt" occurs in no sequences (0%) after mutations

- **Challenges**

 - We do not know how the motif looks like ("random" motifs)
 - We do not know where the motif is located in each gene sequence
 - Motifs can differ slightly from one gene to another by mutations

Consensus Pattern & Consensus Score

- **Profiles**

 - Frequency of each character on each column of \(s \)

 \[
 \begin{align*}
 \text{Alignment} & \quad \text{Profile} \\
 aGgtatcTt & \quad A \ 3 \ 0 \ 1 \ 0 \ 3 \ 1 \ 1 \ 0 \\
 CcAatatcgt & \quad C \ 2 \ 4 \ 0 \ 0 \ 1 \ 4 \ 0 \ 0 \\
 acgtTAgt & \quad G \ 0 \ 1 \ 4 \ 0 \ 0 \ 0 \ 3 \ 1 \\
 acgtCCgt & \quad T \ 0 \ 0 \ 0 \ 5 \ 1 \ 0 \ 1 \ 4 \\
 cgcatacgG & \quad \rightarrow \text{Consensus motif}
 \end{align*}
 \]

- **Consensus Pattern**

 - A string such that each column has the character with the highest frequency

- **Consensus Score**

 - \(C(i) \): the largest count in column \(i \)

 \[
 C_r(s) = \sum_{i=1}^{m} C(s_i)
 \]
Formulation of Motif Finding Problem (1)

➢ Goal
 ▪ Finding approximate occurrences of substrings (length-m) from
 the set of strings (length-n)

➢ Input
 ▪ A set of k strings T_1, T_2, \ldots, T_k and the length of the substring, m

➢ Output
 ▪ The starting position vector, $s = (s_1, s_2, \ldots, s_k)$, of the substrings that
 maximize the consensus score over all k strings

Naïve Approach

➢ Algorithm
 ▪ Exhaustive search

  ```
  NAIVEMOTIFFINDING([T_1, T_2, \ldots, T_k], n, m)
  score ← 0
  pos ← (0, 0, \ldots, 0)
  for $s = (1, 1, \ldots, 1)$ to $(n - m + 1, \ldots, n - m + 1)$
    if $C_T(s)$ > score
      then score ← $C_T(s)$ and pos ← $s$
  return pos
  ```

➢ Runtime ?
Total Distance

- Definition
 - \(d_H(u, v) \): hamming distance between two strings, \(u \) and \(v \)
 - Given a pattern \(P \), total distance, \(d_T(P, s) = \sum_{i=1}^{k} d_H(P, T[s_i, \ldots, (s_i + m - 1)]) \)

- Example
 - \(P = \) "ATGCAACT", \(s = (s_1, s_2, s_3) \)
 - \(T_1[s_1,\ldots,(s_1+7)] = \) "ATCCAGCT"
 - \(T_2[s_2,\ldots,(s_2+7)] = \) "AAGCAACC"
 - \(T_3[s_3,\ldots,(s_3+7)] = \) "ATGCCATT"
 - \(d(P, s) = ? \)

- Relationship between Total Distance and Consensus Score?

Formulation of Motif Finding Problem (2)

- Goal
 - Finding approximate occurrences of substrings (length-\(m \)) from the set of strings (length-\(n \))

- Input
 - A set of \(k \) strings \(T_1, T_2, \ldots, T_k \) and the length of the substring, \(m \)

- Output
 - The starting position vector, \(s = (s_1, s_2, \ldots, s_k) \), of the substrings that minimize the total distance over all \(k \) strings
Naïve Approach

- Algorithm
 - Exhaustive search

```python
NAIVE-MOTIF-FINDING(\{T_1, T_2, \ldots, T_k\}, n, m)
  dist \leftarrow \infty
  \text{for each pattern } P
    \text{for each } i
      \text{find } \min_{\hat{d}_H(P, T[i, \ldots, i + m - 1])}
      s_i \leftarrow x
      \text{if } d_T(P, s) \text{ < dist}
        \text{then } dist \leftarrow d_T(P, s) \text{ and } pos \leftarrow s
  \text{return } pos
```

- Runtime?

Branch-And-Bound Approach

- Process
 - Run the naïve motif finding algorithm with \(m' \) where \(m' < m \)
 - Output all starting position vectors \(s \) where \(d_T(P, s) < \) max threshold
 - Run the naïve motif finding algorithm with \(m \) for \(s \)

- Problem?
 - Trade-off in efficiency vs. accuracy
Questions?

- Lecture Slides are found on the Course Website,
 web.ecs.baylor.edu/faculty/cho/5330