Ontological Analysis

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

Ontology

- **Ontology in Philosophy**
 - The study of the nature of being or existence including their categories and their relations (wikipedia)

- **Ontology in Computer Science**
 - The specification of a conceptualization: description of the concepts and relationships that exist for an agent or a community of agents (Gruber)
 - A set of representational primitives (i.e., classes, attributes, and relationships) for modeling a domain of knowledge

- **Ontology in Biology and Bioinformatics**
 - A formal way of representing biological knowledge which is described by the concepts and their relationships to each other (Bard and Rhee)
Representation of Ontology

- **Components**
 - Concepts and Relationships

- **Representation**
 - Graph (concepts → nodes, relationships → edges)

Relationships in Ontology

- **Directions**
 - Relationships are generally directed
 - Concepts have parent-child relationships

- **Properties** (in tree or DAG)
 - Antisymmetric
 - Transitivity

- **Examples**
 - “is-a” relationship
 - “part-of” relationship
MIPS Functional Catalogue

Features
- The functional concepts are nodes
- Tree structure for the relationships between functional concepts
- Provides functional annotation for small model organisms (functional descriptions of genes or proteins)
- Manually created
- Well-suited for the annotation of genome from different domains of life

- http://mips.helmholtz-muenchen.de/funcatDB/

Gene Ontology (GO)

Features
- Organized by GO Consortium
- A repository of bio-ontology (controlled vocabularies) databases – consistent descriptions across different organisms
- Nodes represent GO terms structured in 3 main categories: biological processes, molecular functions, and cellular components
- DAG for the relationships between GO terms
- Provides annotation of genes and gene products
- Created by any published evidence (mostly, from high-throughput data)
- Data curation, e.g., redundant annotation elimination

GO Structure

Properties
- DAG structure of GO terms with many different types of relationships: "is-a", "part-of", "regulates", "positively regulates", "negatively regulates", etc.
- Transitivity property of annotations via "is-a" and "part-of" relationships between terms → Inferred annotations

Example

![Image of GO structure with annotations](image)

Human Phenotype Ontology (HPO)

Features
- A repository of phenotypic information of human
- Nodes represent the HPO terms describing phenotypic features
- DAG for the relationships between HPO terms
- Provides annotation of human genes and gene products
- Based on OMIM, a catalog of human genes and genetic disorders
- Data manual curation

HPO Structure

Properties
- DAG structure of HPO terms with “is-a” relationships
- Transitivity property of annotations between terms → Inferred annotations

Example

Research Topic 1. Semantic Similarity Analysis

Definition of Semantic Similarity
- Ontological relatedness between two concepts
- In Gene Ontology, similarity between two terms

Categories
- Ontology structure-based methods
 - Edge-based methods
 - Node-based methods
- Annotation-based methods
- Integrative methods
Edge-Based Measures

- Path length between two terms
 \[\text{sim}(C_1, C_2) = \frac{1}{\text{len}(C_1, C_2)} + 1 \]

- Normalized path length between two terms by GO depth
 \[\text{sim}(C_1, C_2) = -\log\left(\frac{\text{len}(C_1, C_2)}{2 \times \text{depth}}\right) \]

- Depth to the most specific common ancestor

- Normalized depth to the most specific common ancestor by average depth to two terms
 \[\text{sim}(C_1, C_2) = \frac{2 \times \text{len}(C_{\text{root}}, C_0)}{\text{len}(C_0, C_1) + \text{len}(C_0, C_2) + 2 \times \text{len}(C_{\text{root}}, C_0)} \]
 where \(C_0 \) is the most specific common ancestor term

Node-Based Measures

- Number of common ancestors
 \[\text{sim}(C_1, C_2) = |\text{Pt}(C_1) \cap \text{Pt}(C_2)| \]
 where \(\text{Pt}(C) \) is the set of ancestors of the term \(C \)

- Normalized number of common ancestors
 - Jaccard index \(\text{sim}(C_1, C_2) = \frac{|\text{Pt}(C_1) \cap \text{Pt}(C_2)|}{|\text{Pt}(C_1) \cup \text{Pt}(C_2)|} \)
 - Dice index \(\text{sim}(C_1, C_2) = \frac{2 \times |\text{Pt}(C_1) \cap \text{Pt}(C_2)|}{|\text{Pt}(C_1)| + |\text{Pt}(C_2)|} \)
 - Min normalization \(\text{sim}(C_1, C_2) = \frac{|\text{Pt}(C_1) \cap \text{Pt}(C_2)|}{\min(|\text{Pt}(C_1)|, |\text{Pt}(C_2)|)} \)
Information Contents

- **Formulation**
 - In Information Theory, the information content of a concept C is defined as $\log P(C)$

- **Transitivity Property of Annotations**
 - If a gene g is annotated to a term C, then it is also annotated to all the ancestor terms of C towards the root.
 - The likelihood of C can be defined by the annotation on C
 \[P(C) = \frac{\text{the number of genes annotated to } C}{\text{the number of all genes annotated to the ontology}} \]

Annotation-Based Measures

- **Information content of the most specific common ancestor**
 \[\text{sim}(C_1, C_2) = -\log P(C_0) \]
 where C_0 is the most specific common ancestor

- **Normalized information content of the most specific common ancestor by average information content of two terms**
 \[\text{sim}(C_1, C_2) = \frac{2 \times \log P(C_0)}{\log P(C_1) + \log P(C_2)} \]

- **Sum of differences between information content of the most specific common ancestor and information content of two terms**
 \[\text{sim}(C_1, C_2) = \frac{1}{2 \times \log P(C_0) - \log P(C_1) - \log P(C_2) + 1} \]
Integrative Methods

- Combination of an edge-based measure and a node-based measure
 \[\text{sim}(C_1, C_2) = \sum_{C_i \in \{P(C_1) \cap P(C_2)\}} \text{len}(C_{\text{root}}, C_i) \]

- Combination of a node-based measure and an annotation-based measure
 \[\text{sim}(C_1, C_2) = \frac{\sum_{C_i \in \{P(C_1) \cap P(C_2)\}} \log P(C_i)}{\sum_{C_j \in \{P(C_1) \cup P(C_2)\}} \log P(C_j)} \]

- Combination of two annotation-based measures

Problems of Semantic Similarity

- Node-Based Methods
 - Assumes that all GO terms are meaningful
 (Terms have been randomly created based on evidence.)

- Edge-Based Methods
 - Assumes that all relationships represent the same quantity of similarity
 (Relationships have been randomly created based on evidence.)

- Annotation-Based Methods
 - Applicable only if genes are fully annotated
Applications of Semantic Similarity

- **Applications**
 - Functional prediction of incompletely annotating genes
 - Semantic similarity between terms (concepts)
 → Functional similarity between genes

- **Challenges**
 - A single gene performs multiple functions
 - A single gene is annotated on multiple terms
 - $X = \{X_1, X_2, \ldots, X_m\}$ are the most specific terms having a gene g_1
 - $Y = \{Y_1, Y_2, \ldots, Y_n\}$ are the most specific terms having a gene g_2

Implementation of Functional Similarity

- **Functional Similarity between Genes**
 - Measuring semantic similarity between two sets of terms

- **Pairwise Methods**
 - Measuring semantic similarity between terms
 - Aggregating term-to-term semantic similarities
 - Ex, edge-based and annotation-based methods

- **Group-wise Methods**
 - Measuring semantic similarity directly between two sets of terms
 - Ex, node-based methods
Aggregation of Semantic Similarities

- **Pairwise Averaging**
 - Average of semantic similarity scores between X_i and Y_i
 \[
 sim(g_1, g_2) = \frac{\sum_{i,j} sim(X_i, Y_j)}{|X| \times |Y|}
 \]

- **Best Matching**
 - Maximum semantic similarity score between X_i and Y_i
 \[
 sim(g_1, g_2) = \max_i \max_j sim(X_i, Y_j)
 \]

- **Best-Match Averaging**
 \[
 sim(g_1, g_2) = \frac{\sum_i \max_j sim(X_i, Y_j) + \sum_j \max_i sim(X_i, Y_j)}{|X| + |Y|}
 \]

Research Topic 2. Association Rule Analysis

- **Definition of Association Rules**
 - One-directional relationship between two sets of items
 - In Gene Ontology, association rules from a term A to a term B

- **Categories**
 - Pairwise association rules vs. Multi-terms association rules
 - Within-ontology rules vs. Cross-ontology rules
Association Rules Basics (1)

- **Background**
 - Used to solve a market basket problem
 - Found from a transaction database
 - Transaction: a set of items that are bought by one person at one time
 - Transaction database example

<table>
<thead>
<tr>
<th>T-ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bread, eggs, milk, diapers</td>
</tr>
<tr>
<td>2</td>
<td>coke, beer, nuts, diapers</td>
</tr>
<tr>
<td>3</td>
<td>eggs, juice, beer, nuts</td>
</tr>
<tr>
<td>4</td>
<td>milk, beer, nuts, diapers</td>
</tr>
<tr>
<td>5</td>
<td>milk, beer, diapers</td>
</tr>
</tbody>
</table>

Association Rules Basics (2)

- **Frequent itemsets**
 - A set of items (as a subset of any single transaction) which occur frequently across a transaction
 - Itemset having support greater than (or equal to) a user-specified minimum support threshold

- **Support**
 - Frequency of a set of items across transactions

\[
\text{support } (A \rightarrow B) = P(A \cup B)
\]
Association Rules Basics (3)

- **Association Rules**
 - One-directional relationship between two sets of items (e.g., A → B)
 - Rules having confidence greater than (or equal to) a user-specified minimum confidence threshold

- **Confidence**
 - For A → B, percentage of transactions containing A that also contain B

 \[\text{confidence} (A \rightarrow B) = \frac{P(B \mid A)}{P(A)} = \frac{P(A \cup B)}{P(A)} \]

Association Rule Mining

- **Process**
 1. Find frequent itemsets
 2. Find association rules

- **Brute Force Algorithm**
 - Enumerate all possible subsets of the total itemset
 - Count frequency of each subset
 - Select frequent itemsets

- **Apriori Algorithm**
 - Iterative increment of the itemset size
 1. Candidate itemset generation
 2. Frequent itemset generation
Apriori Algorithm Details

- **Downward Closure Property**
 - Any superset of an itemset X cannot have higher support than X
 - If an itemset X is frequent (support of X is higher than minimum support), then any subset of X must be frequent

- **Candidate Itemset Generation**
 - **Selective joining**
 - Each candidate itemset with size k is generated by joining two frequent itemsets with size (k-1)
 - The frequent itemsets with size (k-1) which share a frequent sub-itemset with size (k-2) are joined
 - **A priori pruning**
 - A frequent itemset with size k which has any infrequent sub-itemsets with size (k-1) is pruned

Applications of Association Rules

- **Applications**
 - Application to GO annotation data

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>GO terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Term-1, Term-4, Term-6</td>
</tr>
<tr>
<td>2</td>
<td>Term-2, Term-4</td>
</tr>
<tr>
<td>3</td>
<td>Term-1, Term-3, Term-4</td>
</tr>
<tr>
<td>4</td>
<td>Term-3, Term-5, Term-6, Term-7</td>
</tr>
</tbody>
</table>

- Curation of GO (by within-ontology rules)
- Functional prediction of incompletely annotating genes
- Correction of inconsistent annotations
Questions?

- Lecture Slides are found on the Course Website,
 web.ecs.baylor.edu/faculty/cho/5330