Graph Representation

- **Graph**
 - An ordered pair $G(V,E)$ with a set of vertices V and a set of edges E

- **Extended Graph Representation**
 - Directed vs. undirected graph
 - Whether each edge has a direction
 - Weighted vs. unweighted graph
 - Whether each edge has a weight
 - Labeled vs. unlabeled graph
 - Whether each vertex has a label
 - 2-D vs. 3-D graph representation
 - Each vertex has angles between two linked edges
Why Graph Mining is Important?

- Data are often represented as a graph
 - Biological networks
 - Chemical compounds
 - Internet
 - WWW
 - Electric circuits
 - Workflows
 - Social networks

- Graph is a general model for data mining!!

Graph Data Mining Topics (1)

- Single Graph Mining
 - Frequent sub-graph pattern mining
 - Finding sub-graphs that frequently occur in a graph
 - Graph clustering (Vertex clustering)
 - Partitioning a graph into sub-graphs
 - Vertex classification
 - Classifying a vertex in a graph
Graph Data Mining Topics (2)

- **Graph Dataset Mining**
 - Frequent sub-graph pattern mining
 - Finding sub-graphs that frequently occur among graphs
 - Graph data clustering
 - Grouping similar graphs
 - Graph data classification
 - Classifying a new graph

<table>
<thead>
<tr>
<th>id</th>
<th>graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Applications

- **Application of Single Graph Mining**
 - Biological network analysis
 - Social network analysis
 - Web community analysis

- **Application of Graph Dataset Mining**
 - Biochemical structure analysis
 - Program control flow analysis
 - XML structure analysis

- **Challenges**
 - Finding the complete set satisfying the minimum support threshold
 - Developing efficient and scalable algorithms
 - Incorporating various kinds of user-specific constraints
Chapters 11 and 13, Graph Data Mining

- **General Definitions**
 - **Graph Clustering**
 - **Subgraph Pattern Mining**

Connectivity

- **Degree, \(\text{deg}(v_i)\)**
 - The number of links from \(v_i\) to other vertices
 - Incoming degree and outgoing degree for directed graphs
 - Weighted degree (sum of the weights of the edges directly connected) for weighted graphs

- **A Set of Neighbors, \(N(v_i)\)**
 - A set of vertices directly linked to the vertex \(v_i\)
 - Also called adjacent neighbors or direct neighbors

- **Degree Distribution, \(P(k)\)**
 - Probability that a vertex has exactly \(k\) links
 - The number of vertices whose degree is \(k\) over the total number of vertices
Length & Size

- **Walk**
 - A sequence of vertices such that each is linked to its succeeding one

- **Path**
 - A walk such that each vertex in the walk is distinct

- **Path Length**
 - The number of edges in path p

- **Shortest Path between v_i and v_j**
 - A path with the smallest length out of all paths from v_i to v_j

- **Characteristic Path Length of G**
 - Average length of the shortest paths between each pair of vertices

- **Diameter of G**
 - Largest length of the shortest paths between each pair of vertices

Density

- **Density of $G(V,E)$**
 - The number of actual edges in G over the number of all possible edges
 - $D(G) = \frac{2|E|}{|V|(|V|-1)}$

- **Clique**
 - A fully connected graph (also called, complete graph)
 - $D(G) = 1$

- **Quasi-Clique**
 - Close to clique
 - A densely connected sub-graph
 - $D(G) > \theta$ where θ is a user-specified threshold
Modularity

- **Clustering Coefficient of** v_i
 - The density of a sub-graph $G'(V', E')$ where V' is the set of neighbors of v_i
 - $C(v_i) = \frac{\left| \bigcup_{j \in N(v_i)} \{v_j, v_i\} \right|}{|N(v_i)|(|N(v_i)| - 1)}$
 - Measuring the effectiveness of v_i on denseness

- **Average Clustering Coefficient of** $G(V, E)$
 - Average of the clustering coefficients of all vertices in V
 - Maximum is 1
 - Measuring the modularity of G

Centrality

- **Closeness,** $C_c(v_i)$
 - Detects the vertices located in the center of a graph
 - $C_c(v_i) = \frac{1}{\sum_{v_j \in V \setminus \{v_i\}} |p_v(v_i, v_j)|}$
 where $|p_v(v_i, v_j)|$ is the shortest path length between v_i and v_j

- **Betweenness,** $C_b(v_i)$
 - Detects the vertices located between two clusters
 - $C_b(v_i) = \frac{\sum_{s \in V \setminus \{v_i\}} \sum_{t \in V \setminus \{v_i\}} \frac{\sigma_{st}(v_i)}{\sigma_{st}}}{(n-1)(n-2)}$
 where σ_{st} is the number of shortest paths between s and t, and
 $\sigma_{st}(v_i)$ is the number of shortest paths between s and t which pass through the vertex v_i
Chapters 11 and 13, Graph Data Mining

- General Definitions
- Graph Clustering
- Subgraph Pattern Mining