Supervised vs. Unsupervised Learning

- **Supervised Learning**
 - Called *classification*
 - Training data (observations, measurement, etc.) are given
 - Training data include class labels predefined
 - Find rules or models of class labels of training data
 - New data are classified based on the rules or models

- **Unsupervised Learning**
 - Called *clustering*
 - No training data are given
 - New data are classified without any training data
Classification vs. Prediction

Classification
- Training class labels in attributes of a training data set
- Predicts class labels of a new data set based on the rules or models of class labels of the training data set

Prediction
- Modeling continuous-valued functions for a data set
- Predicts unknown or missing values in the data set

Classification Step 1: Training

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Years</th>
<th>Tenured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>Assistant Prof</td>
<td>3</td>
<td>no</td>
</tr>
<tr>
<td>Mary</td>
<td>Assistant Prof</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>Bill</td>
<td>Professor</td>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>Jim</td>
<td>Associate Prof</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>Dave</td>
<td>Assistant Prof</td>
<td>6</td>
<td>no</td>
</tr>
<tr>
<td>Anne</td>
<td>Associate Prof</td>
<td>3</td>
<td>no</td>
</tr>
</tbody>
</table>

Classifiers (Models)

- IF rank = 'professor' OR years > 6 THEN tenured = 'yes'
Classification Step 2: Prediction

<table>
<thead>
<tr>
<th>NAME</th>
<th>RANK</th>
<th>YEARS</th>
<th>TENURED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom</td>
<td>Assistant Prof</td>
<td>2</td>
<td>no</td>
</tr>
<tr>
<td>Merlisa</td>
<td>Associate Prof</td>
<td>7</td>
<td>no</td>
</tr>
<tr>
<td>George</td>
<td>Professor</td>
<td>5</td>
<td>yes</td>
</tr>
<tr>
<td>Joseph</td>
<td>Assistant Prof</td>
<td>7</td>
<td>yes</td>
</tr>
</tbody>
</table>

(Jeff, Professor, 4)

Tenured?

Issues in Classification

- **Accuracy**
 - Training accuracy and prediction accuracy

- **Efficiency**
 - Training time and prediction time

- **Robustness**
 - Handling noise and missing values

- **Scalability**
 - Efficient memory usage in disk-resident databases

- **Interpretability**
 - Understanding of classifying models
Chapters 8 and 9, Classification

- Decision Tree Induction
 - Bayesian Classification
 - k-Nearest Neighbor Learning
 - Rule-Based Classification
 - Pattern-Based Classification
 - Classification Accuracy Measures

Decision Tree Induction

- **Decision Tree Structure**
 - Each non-leaf node represents **??**
 - Attributes should be categorical (if continuous, discretize the values)
 - Each attribute should have a finite number of values
 - Each leaf node represents **??**
 - Each edge represents **??**

- **Decision Tree Construction**
 - A decision tree is constructed in a top-down recursive manner
 - An attribute is selected based on an information-theoretic measure
 - The training data are recursively partitioned on the selected attribute at each round
 - The new data are classified by tracing the decision tree from the root
Example of Training Data

- Training Data Set

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rate</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31~40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31~40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>

Example of Decision Tree

- Output Decision Tree for "buys_computer"

```
age?
<=30
<=30
31..40
>40

student?
yes

credit rating?
excellent
fair

yes
no
no
yes
```
Decision Tree Construction

- **Process**
 1. Put all data at the root node
 2. Recursively, select an attribute and partition the data-set into subsets as child nodes, until having a stopping condition

- **Stopping Conditions**
 - If all data samples for a given node in the tree belong to the same class
 - If there are no remaining attributes for further partitioning (majority voting is employed for classifying data in the leaf node)
 - There are no data samples left

ID3 Algorithm

- **Main Idea**
 - Attribute selection measure during decision tree construction
 - select the attribute with the highest information gain
 - Let p_i be the probability that an arbitrary record in D belongs to class C_i
 - Expected information (entropy):
 \[
 Info(D) = - \sum_{i=1}^{n} p_i \log_2(p_i)
 \]
 - Information after using an attribute A to split D into v partitions
 \[
 Info_A(D) = \sum_{j=1}^{v} \left(\frac{|D_j|}{|D|} \times Info(D_j) \right)
 \]
 - **Information gain** by branching on attribute A
 \[
 Gain(A) = Info(D) - Info_A(D)
 \]
Example of Information Gain

- **Information**
 - 9 "yes"es and 5 "no"s, in buy_computer
 - \(\text{Info}(D) = \)

- **Information after Splitting by "age"**
 - \(\text{Info}_{\text{age}}(D) = \)

- **Information Gain by "age"**
 - \(\text{Gain}(\text{age}) = \text{Info}(D) - \text{Info}_{\text{age}}(D) = \)

- **Information Gain by other attributes**
 - \(\text{Gain}(\text{income}) = \)
 - \(\text{Gain}(\text{student}) = \)
 - \(\text{Gain}(\text{credit_rating}) = \)

<table>
<thead>
<tr>
<th>age</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>no</td>
</tr>
</tbody>
</table>

C4.5 Algorithm

- **Main Idea**
 - An extension of the ID3 algorithm
 - Information gain measure in ID3 is biased towards attributes with a large number of values
 - Uses gain ratio to overcome the problem (normalizing information gain)
 - select the attribute with the highest gain ratio
 - Split information for normalization of information gain

 \[
 \text{SplitInfo}_A(D) = -\sum_{j=1}^{v} \left(\frac{|D_j|}{|D|} \right) \times \log_2 \left(\frac{|D_j|}{|D|} \right)
 \]

 - \(\text{Gain ratio}(A) = \text{Gain}(A) / \text{SplitInfo}_A(D) \)
Example of Gain Ratio

- **Split Information by “age”**
 - \(\text{SplitInfo}_{\text{age}}(D) = \)

- **Gain Ratio by “age”**
 - \(\text{GainRatio}(\text{age}) = \)

- **Gain Ratio by other attributes**
 - \(\text{GainRatio}(\text{income}) = \)
 - \(\text{GainRatio}(\text{student}) = \)
 - \(\text{GainRatio}(\text{credit_rating}) = \)

<table>
<thead>
<tr>
<th>age</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>yes</td>
</tr>
<tr>
<td>31~40</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>no</td>
</tr>
</tbody>
</table>

CART

- **CART**
 - Classification and Regression Trees

- **Main Idea**
 - Binary decision tree generation and classification
 - Gini index: a measure of inequality
 \[Gini(D) = 1 - \sum_{j=1}^{m} p_j^2 \]

 - If a data set \(D \) is split on the attribute \(A \) into two subsets \(D_1 \) and \(D_2 \),
 \[Gini_A(D) = \left| \frac{D_1}{|D|} \right| Gini(D_1) + \left| \frac{D_2}{|D|} \right| Gini(D_2) \]

 - Reduction in impurity by the binary split on \(A \)
 \[\Delta Gini(A) = Gini(D) - Gini_A(D) \]

 - select the attribute with the smallest \(\Delta Gini(A) \)
Example of Gini Index

- **Gini Index in “buy_computer”**
 - 9 “yes”es and 5 “no”s, in buy_computer
 - \(Gini(D) = \)

- **Gini Index after Splitting by “age”**
 - Split \(D \) on age into “\(\leq 30 \)” and “\(> 30 \)”
 - \(Gini_{age}(D) = \)

- **Gini Index after Splitting by other attributes**
 - \(Gini_{income}(D) = \)
 - \(Gini_{student}(D) = \)
 - \(Gini_{credit_rating}(D) = \)

<table>
<thead>
<tr>
<th>age</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 30)</td>
<td>no</td>
</tr>
<tr>
<td>(\leq 30)</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>yes</td>
</tr>
<tr>
<td>(\leq 30)</td>
<td>no</td>
</tr>
<tr>
<td>(\leq 30)</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>yes</td>
</tr>
<tr>
<td>(\leq 30)</td>
<td>yes</td>
</tr>
<tr>
<td>31~40</td>
<td>yes</td>
</tr>
<tr>
<td>31~40</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>no</td>
</tr>
</tbody>
</table>

Problems of Attribute Selection

- **Information Gain**
 - Biased towards the attributes with a large number of values

- **Gain Ratio**
 - Biased towards the unbalanced splits in which one partition is much larger than the others

- **Gini Index**
 - Biased to multi-valued attributes
 - Has difficulty when the number of classes is large
Summary of Decision Tree Induction

➢ **Strength**
 - Simple and easy to understand classification rules
 - Able to use SQL queries to access databases

➢ **Weakness**
 - Applications to continuous attributes – partition the continuous attribute values into a discrete set of intervals
 - Overfitting
 - Limitation of scalability – restriction of the training data size
 → Scalable algorithms: SLIQ, SPRINT, RainForest

Overfitting

➢ **Overfitting**
 - An induced tree may overfit the training data
 - Too many branches may reflect anomalies due to noise or outliers
 - Poor accuracy for classifying new samples

➢ **Two Approaches to Avoid Overfitting**
 - Prepruning: Halt tree construction early
 - Stop splitting a node if the result is falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a “fully grown” tree
 - Get a sequence of progressively pruned trees
 - Inefficient
RainForest

Main Idea
- Create AVC-set / AVC-group, which fit in memory, by scanning database

AVC (Attribute-Value, Class-label)
- AVC-set of a attribute X is the projection of the training dataset on X and class labels where counts of individual class labels are aggregated
- AVC-group of a node n is the set of AVC-sets of all predictor attributes at n

Reference

<table>
<thead>
<tr>
<th>age</th>
<th>buy_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>yes</td>
</tr>
<tr>
<td>31..40</td>
<td>no</td>
</tr>
<tr>
<td>>40</td>
<td>yes</td>
</tr>
</tbody>
</table>

CSI 4352, Introduction to Data Mining

Chapters 8 and 9, Classification

- Decision Tree Induction
- Bayesian Classification
- k-Nearest Neighbor Learning
- Rule-Based Classification
- Pattern-Based Classification
- Classification Accuracy Measures
Bayesian Classification

- **Main Idea**
 - A statistical classifier: performs probabilistic prediction (i.e., outputs the probability of class membership)
 - Based on the Bayesian Theorem
 \[
 P(H|X) = \frac{P(X|H)P(H)}{P(X)}
 \]
 - Assumes that the effect of an attribute value on a given class is independent of the values of the other attributes

Components
- Let X be a sample data ("evidence"): class label is unknown
- $P(X)$, probability that the sample data is observed
- Let H be a hypothesis that X belongs to class C
- $P(H)$ (called **prior probability**), the initial probability
 - e.g., X will buy computer regardless of age, income, ...
- $P(X|H)$ (called **likelihood**), the probability of observing the sample X, given that the hypothesis holds
 - e.g., Given that X will buy computer, the probability that X is 31..40 old with medium income
- $P(H|X)$ (called **posterior probability**), the probability that the hypothesis holds given the observed data X
Bayesian Theorem (2)

- **Formula**
 - Given training data \(X \), posteriori probability of a hypothesis \(H \), \(P(H|X) \), follows the Bayes' theorem,
 \[
 P(H|X) = \frac{P(X|H)P(H)}{P(X)}
 \]
 (posterior = likelihood \times prior / evidence)

- **Application to Classification**
 - Predicts \(X \) belongs to \(C_i \) iff the probability \(P(C_i|X) \) is the highest among all the \(P(C_k|X) \) for all \(k \) classes
 - Practical difficulty: requires initial knowledge of many probabilities, significant computational cost

Naïve Bayesian Classifier (1)

- **Main Idea**
 - Let \(D \) be a training set of data objects with \(n \) attributes and their associated class labels
 - Suppose there are \(m \) classes \(C_1, C_2, ..., C_m \)
 - Classification is to derive the maximum posterior probability, \(P(C_i|X) \)
 \[
 P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}
 \]
 - Suppose \(P(X) \) is constant for all classes, maximize
 \[
 P(C_i|X) = P(X|C_i)P(C_i)
 \]
Naïve Bayesian Classifier (2)

- **Assumption**
 - Attributes are conditionally independent, i.e., no dependence relationship between attributes

 \[
P(X | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times \ldots \times P(x_n | C_i)
\]

 - Reduces the computation cost
 - If \(x_k\) is categorical, \(P(x_k | C_i)\) is the number of objects in \(C_i\) having value \(x_k\) divided by the number of objects of \(C_i\)
 - If \(x_k\) is continuous-valued, \(P(x_k | C_i)\) is usually computed based on Gaussian distribution with a mean \(\mu\) and standard deviation \(\sigma\)

 \[
P(X | C_i) = g(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

Example of Training Data

- **Training Data Set**

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rate</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31~40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31~40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31~40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>> 40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>
Bayesian Classification Results

- $X = (\text{age}\leq30, \text{income}=\text{medium}, \text{student}=\text{yes}, \text{credit_rating}=\text{fair})$

- $P(C_i)$
 - $P(\text{buys_computer} = \text{"yes"}) =$
 - $P(\text{buys_computer} = \text{"no"}) =$

- $P(X|C_i)$
 - $P(\text{age} = \text{"}\leq30\text{"} | \text{buys_computer} = \text{"yes"}) =$
 - $P(\text{income} = \text{"medium"} | \text{buys_computer} = \text{"yes"}) =$
 - $P(\text{student} = \text{"yes"} | \text{buys_computer} = \text{"yes"}) =$
 - $P(\text{credit_rating} = \text{"fair"} | \text{buys_computer} = \text{"yes"}) =$
 - $P(\text{age} = \text{"}\leq30\text{"} | \text{buys_computer} = \text{"no"}) =$
 - $P(\text{income} = \text{"medium"} | \text{buys_computer} = \text{"no"}) =$
 - $P(\text{student} = \text{"yes"} | \text{buys_computer} = \text{"no"}) =$
 - $P(\text{credit_rating} = \text{"fair"} | \text{buys_computer} = \text{"no"}) =$

- $P(C_i|X) = P(X|C_i) \times P(C_i)$
 - $P(\text{buys_computer} = \text{"yes"}|X) =$
 - $P(\text{buys_computer} = \text{"no"}|X) =$

Summary of Naïve Bayesian Classifier

- **Strength**
 - Easy to implement
 - Good results in most of the cases

- **Weakness**
 - Assumption of conditional independence of attributes
 - Loss of accuracy
 - In practice, dependencies exist between attributes
 - Dealing with dependencies: Bayesian belief networks
Bayesian Belief Networks

Main Idea
- Represents dependency among attributes by training data in Bayesian networks

Bayesian Network
- Direct acyclic graph (DAC)

Conditional probability table

<table>
<thead>
<tr>
<th></th>
<th>FH,S</th>
<th>FH,~S</th>
<th>~FH,S</th>
<th>~FH,~S</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC</td>
<td>0.8</td>
<td>0.5</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>~LC</td>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Chapters 8 and 9, Classification

- Decision Tree Induction
- Bayesian Classification
 - k-Nearest Neighbor Learning
- Rule-Based Classification
- Pattern-Based Classification
- Classification Accuracy Measures
k-Nearest Neighbor Learning (kNN)

- **Main Idea**
 - Lazy learning (or, instance-based learning): stores the training data and
 wait until it is given the data for prediction
 → less time in training but more time in predicting
 - All instances (data objects) correspond to points in the n-D space
 - The nearest neighbors are defined in terms of a distance function
 - The distance function is for numerical or categorical values

- **Learning Process**
 - Searches the k closest neighbor instances of the unknown instance
 - For categorical values, the unknown instance is assigned the most
 common class among k neighbors
 - For numerical values, the unknown instance is assigned the mean of
 k neighbors

Distance Functions

- **Numerical Attributes**
 - Minkowski distance, \(d = \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{1/p} \)
 - Euclidean distance when \(p=2 \), and Manhattan distance, when \(p=1 \)

- **Binary Attributes**
 - If symmetric, \(d = \frac{r + s}{q + r + s + t} \)
 - If asymmetric, \(d = \frac{r + s}{q + r + s} \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q</td>
<td>r</td>
<td>q+r</td>
</tr>
<tr>
<td>0</td>
<td>s</td>
<td>t</td>
<td>s+t</td>
</tr>
<tr>
<td>sum</td>
<td>q+s</td>
<td>r+t</td>
<td>p</td>
</tr>
</tbody>
</table>

- **Categorical Attributes**
 - Jaccard coefficient, \(d = \frac{|X \Delta Y|}{|X \cup Y|} = 1 - \frac{|X \cap Y|}{|X \cup Y|} \)
 - \(X \Delta Y \): the symmetric difference between \(X \) and \(Y \)
Summary of kNN

- **Strength**
 - Robust to noisy data by averaging k neighbors

- **Weakness**
 - Distance to neighbors could be dominated by irrelevant attributes
 → Elimination of the least relevant attributes
 - Small k makes sensitive to noise, and large k makes inaccurate
 → Weighting each of the k neighbors according to their distance

Chapters 8 and 9, Classification

- Decision Tree Induction
- Bayesian Classification
- k-Nearest Neighbor Learning
 - Rule-Based Classification
- Pattern-Based Classification
- Classification Accuracy Measures
Rule-Based Classification

- **Main Idea**
 - Represents the knowledge in the form of IF-THEN rules
 - e.g., IF age < 30 AND student = yes, THEN buy_computer = yes
 - e.g., IF student = yes AND income = low, THEN buy_computer = no

- **Process**
 - Training step: generating a set of rules
 - Prediction step: classifying a new data by the rules applied
 - If more than one rule are triggered, need conflict resolution
 - Attribute size ordering: decreasing order of the number of attributes in the rules
 - Rule-based ordering: decreasing order of rule quality

Rule Extraction from Decision Tree

- **Main Idea**
 - Each rule can be created by each path from the root to a leaf
 - Each attribute-value pair along a path forms a conjunction with "AND"
 - Rules are mutually exclusive

- **Examples**
 - IF age = young AND student = yes, THEN buys_computer = yes
 - IF age = young AND student = no, THEN buys_computer = no
 - IF age = mid-age, THEN buys_computer = yes
 - IF age = old AND credit_rating = excellent, THEN buys_computer = yes
 - IF age = old AND credit_rating = fair, THEN buys_computer = no
Rule Extraction by Sequential Covering

➢ Main Idea
 ▪ Each rule is learned sequentially

➢ Sequential Covering Algorithm
 1. Learn a rule, and remove the data covered by the rule
 2. Repeat (1) until reaching a termination condition: when there are no more training data, or it does not reach the rule quality threshold
 3. Repeat (1) and (2) for each class

➢ Rule Learning
 ▪ Starts with the most general rule possible, and grows the rule in a general-to-specific manner
 ▪ Adds new attributes into the rule by selecting the one that most improves the rule quality

Rule Quality Measures

➢ Coverage & Accuracy
 ▪ \(n_{\text{covers}} \) = the number of data objects covered by the rule R
 ▪ \(n_{\text{correct}} \) = the number of data objects correctly classified by R
 ▪ \(\text{coverage}(R) = \frac{n_{\text{covers}}}{|D|} \) where D is the training data set
 ▪ \(\text{accuracy}(R) = \frac{n_{\text{correct}}}{n_{\text{covers}}} \)

➢ FOIL
 ▪ First Order Inductive Learning (based on the information gain)
 ▪ \(\text{pos} \) = the number of positive data objects covered by the rule R
 ▪ \(\text{pos'} \) = the number of positive data objects covered by the new rule R'
 ▪ \(\text{FOIL}_\text{-Gain} = \text{pos'} \times \left(\log_2 \frac{\text{pos'}}{\text{pos' + neg'}} - \log_2 \frac{\text{pos}}{\text{pos + neg}} \right) \)
Chapters 8 and 9, Classification

- Decision Tree Induction
- Bayesian Classification
- k-Nearest Neighbor Learning
- Rule-Based Classification
 - Pattern-Based Classification
- Classification Accuracy Measures

Pattern-Based Classification

- **Main Idea**
 - Frequent patterns and their corresponding association rules are generated and analyzed for classification
 - Also called associative classification
 - Searches for strong associations between frequent patterns and class labels
 - Each pattern is represented as conjunctions of attribute-value pairs with its support and confidence

- **Methods**
 - CBA (Classification by Association)
 - CMAR (Classification based on Multiple Association Rules)
 - CPAR (Classification based on Predictive Association Rules)
CBA (1)

➢ CBA
 ▪ Classification By Association

➢ Main Idea
 ▪ Mining all possible association rules by their support in the form of
 \[p_1 \land p_2 \land ... \land p_n \rightarrow A_{\text{class}} = C \], called Class Association Rule (CAR)
 • The right-hand side of the rule is restricted to a class label
 ▪ Difference between Association Rule Mining and CBA
 • Association Rule Mining: target is not predetermined
 • CBA: only one predetermined target
 ▪ Building a classifier by arranging the rules according to decreasing precedence of their confidence

CBA (2)

➢ Classification Process
 1. Find all covered CARs from the training data
 2. Classify the test data with the highest confidence CAR
 If some CARs have the same confidence, use the highest support CAR
 If some CARs have the same confidence and same support, classify the data with the majority class

➢ Reference
CSI 4352, Introduction to Data Mining

Chapters 8 and 9, Classification

- Decision Tree Induction
- Bayesian Classification
- k-Nearest Neighbor Learning
- Rule-Based Classification
- Pattern-Based Classification
- Classification Accuracy Measures

Evaluation of Classification Methods

- **Holdout Method**
 - Randomly partitions the given data into a training set and a test set

- **Random Sampling**
 - Repeats the holdout method k times
 - Estimates the overall accuracy by averaging the accuracy from each round

- **k-Fold Cross-Validation**
 - Randomly partitions the given data into k mutually exclusive subsets, each approximately equal size
 - Measures accuracy k times using the i-th subset as a test set and the others as a training set

- **Leave-One-Out Cross-Validation**
 - k-fold cross-validation where k is the total size of data set
 - One sample is left out as a test set for each round
Classifier Accuracy Measures (1)

- **Accuracy Measures**

<table>
<thead>
<tr>
<th>Actual class</th>
<th>Predicted class</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_i</td>
<td>true positive</td>
</tr>
<tr>
<td>~C_i</td>
<td>false positive</td>
</tr>
</tbody>
</table>

- Sensitivity (true positive rate, recall) =
- Specificity (true negative rate) =
- Positive predictive value (precision) =
- Negative predictive value =
- Accuracy = sensitivity \times (true positive rate) / total + specificity \times (true negative rate) / total

- Error rate =

Classifier Accuracy Measures (2)

- **ROC Curve**
 - Receiver operating characteristic curve
 - A graphic plot of true positive rate (sensitivity) vs. false positive rate (1-specificity)
 - A tool to show optimality of a classifier
 - The closer to the diagonal line, the less accurate the classifier is
 - The area under the ROC curve (AUC) represents the classifier accuracy
Questions?

- Lecture Slides on the Course Website,
 "www ecs baylor edu faculty cho 4352"