Chapters 6 & 7, Frequent Pattern Mining

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

- Market Basket Problem
- Apriori Algorithm
- CHARM Algorithm
- Advanced Frequent Pattern Mining
- Advanced Association Rule Mining
- Constraint-Based Association Mining
Market Basket Problem

➢ Example
 ▪ "Customers who bought beer also bought diapers."

➢ Motivation
 ▪ To promote sales in retail by cross-selling

➢ Required Data
 ▪ Customers’ purchase patterns
 (Items often purchased together)

➢ Applications
 ▪ Store arrangement
 ▪ Catalog design
 ▪ Discount plans

Solving Market Basket Problem

➢ Basic Terms
 ▪ Transaction:
 a set of items (which are bought by one person at one time)
 ▪ Frequent itemset:
 a set of items (as a subset of a transaction) which occur frequently
 across transactions
 ▪ Association rule:
 one-direction relationship between two sets of items (e.g., A → B)

➢ Process
 ▪ Step 1, Generation of frequent itemsets
 e.g. \{ beer, nuts, diapers \}
 ▪ Step 2, Generation of association rules
 e.g. \{ beer \} → \{ nuts, diapers \} ➔ expected output knowledge
Frequent Itemsets

- **Transaction Table**

<table>
<thead>
<tr>
<th>T-ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bread, eggs, milk, diapers</td>
</tr>
<tr>
<td>2</td>
<td>coke, beer, nuts, diapers</td>
</tr>
<tr>
<td>3</td>
<td>eggs, juice, beer, nuts</td>
</tr>
<tr>
<td>4</td>
<td>milk, beer, nuts, diapers</td>
</tr>
<tr>
<td>5</td>
<td>milk, beer, diapers</td>
</tr>
</tbody>
</table>

- **Support**
 - Frequency of a set of items across transactions
 - \{ milk, diapers \}, \{ beer, nuts \}, \{ beer, diapers \} → 60% support
 - \{ milk, beer, diapers \}, \{ beer, nuts, diapers \} → 40% support

- **Frequent Itemsets**
 - Itemsets having support greater than (or equal to) a user-specified minimum support

Association Rules

- **Frequent Itemsets**
 (min sup = 60%, size ≥ 2)
 - \{ milk, diapers \}
 - \{ beer, nuts \}
 - \{ beer, diapers \}

- **Confidence**
 - For \(A \rightarrow B \), percentage of transactions containing \(A \) that also contain \(B \)
 - \{ milk \} → \{ diapers \}, \{ nuts \} → \{ beer \} : 100% confidence
 - \{ diapers \} → \{ milk \}, \{ beer \} → \{ nuts \}, \{ beer \} → \{ diapers \}, and \{ diapers \} → \{ beer \} : 75% confidence

- **Association Rules**
 - Rules having confidence greater than (or equal to) a user-specified minimum confidence
Generalized Formulas

- **Association Rules**
 - \(I = \{ I_1, I_2, \ldots, I_m \} \), \(T = \{ T_1, T_2, \ldots, T_n \} \), \(T_k \subseteq I \) for \(k \)
 - \(A \rightarrow B \) where \(A \subseteq I (A \neq \emptyset) \), \(B \subseteq I (B \neq \emptyset) \), \(A \subseteq T_i \) for \(\exists i \), \(B \subseteq T_j \) for \(\exists j \), and \(A \cap B = \emptyset \)

- **Computation of Support**
 - \(\text{support} (A \rightarrow B) = \frac{P(A \cup B)}{n} \)
 - where \(P(X) = \frac{|\{T_i \mid X \subseteq T_i\}|}{n} \)

- **Computation of Confidence**
 - \(\text{confidence} (A \rightarrow B) = \frac{P(B \mid A)}{P(A)} = \frac{P(A \cup B)}{P(A)} \)

Problem of Support & Confidence

- **Support Table**

<table>
<thead>
<tr>
<th></th>
<th>Tea</th>
<th>Not Tea</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffee</td>
<td>20</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Not Coffee</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>SUM</td>
<td>30</td>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Association Rule, \{Tea\} \rightarrow \{Coffee\}**
 - Support (\{Tea\} \rightarrow \{Coffee\}) ?
 - Confidence (\{Tea\} \rightarrow \{Coffee\}) ?

- **Problems in this Dataset ?**
Alternative Measures

- **Lift**

 \[
 \text{lift (A \rightarrow B)} = \frac{\text{confidence (A \rightarrow B)}}{P(B)}
 \]

 - The association rule \(A \rightarrow B \) is interesting if \(\text{lift}(A \rightarrow B) > 1 \)
 - However, it is the same to correlation between A and B

- **Correlation**

 \[
 \text{lift (A \rightarrow B)} = \frac{P(A \cup B)}{P(A) \times P(B)} = \text{correlation (A, B)}
 \]

 - Positive correlation if \(\text{correlation}(A,B) > 1 \)
 - Negative correlation if \(\text{correlation}(A,B) < 1 \)
 - \(A \leftrightarrow B \)

\(\chi^2 \) Test (Chi-Square Test)

- Evaluates whether an observed distribution in a sample differs from a theoretical distribution (i.e., hypothesis).
- Where \(E_i \) is an expected frequency and \(O_i \) is an observed frequency,
 \[
 \chi^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}
 \]

 - The larger \(\chi^2 \), the more likely the variables are related (positively or negatively).
Chapters 6 & 7, Frequent Pattern Mining

- Market Basket Problem
 - Apriori Algorithm
- CHARM Algorithm
- Advanced Frequent Pattern Mining
- Advanced Association Rule Mining
- Constraint-Based Association Mining

Frequent Itemset Mining

- Process
 1. Find frequent itemsets → computational problem
 2. Find association rules

- Brute Force Algorithm for Frequent Itemset Generation
 - Enumerate all possible subsets of the total itemset, \(I \)
 - Count frequency of each subset
 - Select frequent itemsets

- Problem
 - Enumerating all candidates is not computationally acceptable
 → Efficient & scalable algorithm is required.
Apriori Algorithm

- **Motivations**
 - Efficient frequent itemset analysis
 - Scalable approach

- **Process**
 - Iterative increment of the itemset size
 1. Candidate itemset generation → computational problem
 2. Frequent itemset selection

- **Downward Closure Property**
 - Any superset of an itemset X cannot have higher support than X.
 → If an itemset X is frequent (support of X is higher than min. sup.),
 then any subset of X should be frequent.

Candidate Itemset Generation

- **Process**
 - Two steps: (1) selective joining and (2) a priori pruning

- **Selective Joining**
 - Each candidate itemset with size k is generated by joining two frequent itemsets with size $(k-1)$
 - The frequent itemsets with size $(k-1)$ which share a frequent sub-itemset with size $(k-2)$ are joined

- **A priori Pruning**
 - A frequent itemset with size k which has any infrequent sub-itemsets with size $(k-1)$ is pruned
Detail of Apriori Algorithm

- **Basic Terms**
 - C_k: Candidate itemsets of size k
 - L_k: Frequent itemsets of size k
 - sup_{min}: Minimum support

- **Pseudo Code**

 $k \leftarrow 1$
 $L_k \leftarrow$ frequent itemsets with size 1

 while $L_k \neq \emptyset$

 $k \leftarrow k + 1$
 $C_k \leftarrow$ candidate itemsets by selective joining & a priori pruning from L_{k-1}
 $L_k \leftarrow$ frequent itemsets using sup_{min}

 end while

 return $U_k L_k$

Example of Apriori Algorithm

- $sup_{min} = 2$

<table>
<thead>
<tr>
<th>T-ID</th>
<th>Items</th>
<th>L_1</th>
<th>C_1</th>
<th>L_2</th>
<th>C_2</th>
<th>L_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, C, D</td>
<td>2</td>
<td>(A) 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>B, C, E</td>
<td>3</td>
<td>(B) 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>A, B, C, E</td>
<td>1</td>
<td>(C) 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>B, E</td>
<td>1</td>
<td>(D) 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>A, B, C, E</td>
<td>2</td>
<td>(E) 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A,B)</td>
<td>1</td>
</tr>
<tr>
<td>(A,C)</td>
<td>2</td>
</tr>
<tr>
<td>(A,E)</td>
<td>1</td>
</tr>
<tr>
<td>(B,C)</td>
<td>2</td>
</tr>
<tr>
<td>(B,E)</td>
<td>3</td>
</tr>
<tr>
<td>(C,E)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B,C,E)</td>
<td>2</td>
</tr>
</tbody>
</table>
Summary of Apriori Algorithm

➤ Features
 ▪ An iterative approach of a level-wise search
 ▪ Reducing search space by downward closure property

➤ References

Challenges of Apriori Algorithm

➤ Challenges
 ▪ Multiple scan of transaction database
 ▪ Huge number of candidates
 ▪ Tedious workload of support counting

➤ Solutions
 ▪ Reducing transaction database scans
 ▪ Shrinking number of candidates
 ▪ Facilitating support counting
Chapters 6 & 7, Frequent Pattern Mining

- Market Basket Problem
- Apriori Algorithm
 - **CHARM Algorithm**
- Advanced Frequent Pattern Mining
- Advanced Association Rule Mining
- Constraint-Based Association Mining

Association Rule Mining

- **Process**
 1. Find frequent itemsets → computational problem
 2. Find association rules → redundant rule generation

- **Example 1**
 - \{ beer \} \rightarrow \{ nuts \} \ (40\% \text{ support}, 75\% \text{ confidence})
 - \{ beer \} \rightarrow \{ nuts, diapers \} \ (40\% \text{ support}, 75\% \text{ confidence})
 - The first rule is not meaningful.

- **Example 2**
 - \{ beer \} \rightarrow \{ nuts \} \ (60\% \text{ support}, 75\% \text{ confidence})
 - \{ beer, diapers \} \rightarrow \{ nuts \} \ (40\% \text{ support}, 75\% \text{ confidence})
 - Both rules are meaningful.
Frequent Closed Itemsets

- **General Definition of Closure**
 - A frequent itemset \(X \) is **closed** if there exists no superset of \(X, Y \supseteq X \), with the same support as \(X \).
 - Different from frequent **maximal** itemsets

- **Frequent Closed Itemsets** with **Min. Support of 40%**
 - \(\{ \text{ milk, diapers } \} \) 60%
 - \(\{ \text{ milk, beer } \} \) 60%
 - \(\{ \text{ beer, nuts } \} \) 60%
 - \(\{ \text{ beer, diapers } \} \) 60%
 - \(\{ \text{ nuts, diapers } \} \) 60%
 - \(\{ \text{ milk, beer, diapers } \} \) 40%
 - \(\{ \text{ beer, nuts, diapers } \} \) 40%

<table>
<thead>
<tr>
<th>T-ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bread, eggs, milk, diapers</td>
</tr>
<tr>
<td>2</td>
<td>coke, beer, nuts, diapers</td>
</tr>
<tr>
<td>3</td>
<td>eggs, juice, beer, nuts</td>
</tr>
<tr>
<td>4</td>
<td>milk, beer, nuts, diapers</td>
</tr>
<tr>
<td>5</td>
<td>milk, beer, diapers</td>
</tr>
</tbody>
</table>

- **Mapping of Items and Transactions**

 - **Mapping Functions**
 - \(I = \{ I_1, I_2, \ldots, I_m \}, \ T = \{ T_1, T_2, \ldots, T_n \}, \ X \subseteq I, \ Y \subseteq T \)
 - \(i: T \rightarrow I, \ i(Y): \) itemset that is contained in all transactions in \(Y \)
 - \(t: I \rightarrow T, \ t(X): \) set of transactions (tidset) that contain all items in \(X \)

 - **Properties**
 - \(X_1 \subseteq X_2 \rightarrow t(X_1) \supseteq t(X_2) \)
 - (e.g.) \(\{\text{ACW}\} \subseteq \{\text{ACTW}\} \rightarrow \{1345\} \supseteq \{135\} \)
 - \(Y_1 \subseteq Y_2 \rightarrow i(Y_1) \supseteq i(Y_2) \)
 - (e.g.) \(\{245\} \subseteq \{2456\} \rightarrow \{\text{CDW}\} \supseteq \{\text{CD}\} \)
 - \(X \subseteq i(t(X)), \ Y \subseteq t(i(Y)) \)
 - (e.g.) \(t(i(\{\text{AC}\})) = \{1345\}, \ i(\{1345\}) = \{\text{ACW}\} \)
 - (e.g.) \(i(\{134\}) = \{\text{ACW}\}, \ t(i(\{\text{ACW}\})) = \{1345\} \)
Definition of Closure

- **Closure Operator**
 - $c_i(x) = i(t(x))$, $c_i(y) = i(t(y))$

- **Formal Definition of Closure**
 - An itemset X is closed if $X = c_i(x)$
 - A tid-set Y is closed if $Y = c_i(y)$

Examples of Closed Itemsets

- **Examples**
 - $X = \{ACW\}$
 - $t(x) = \{1345\}$, $i(t(x)) = \{ACW\}$
 - X is closed.
 - $X = \{AC\}$
 - $t(x) = \{1345\}$, $i(t(x)) = \{ACW\}$
 - X is not closed.
 - $X = \{ACT\}$
 - $t(x) = \{135\}$, $i(t(x)) = \{ACTW\}$
 - X is not closed.
 - $X = \{CT\}$
 - $t(x) = \{1356\}$, $i(t(x)) = \{CT\}$
 - X is closed.
CHARM Algorithm

- **Motivations**
 - Efficient frequent closed itemset analysis
 - Non-redundant rule generation

- **Property**
 - Simultaneous exploration of itemset space and tid-set space
 - Not enumerating all possible subsets of a closed itemset
 - Early pruning strategy for infrequent and non-closed itemsets

- **Process**
 - for each itemset pair
 - computing the frequency of their union set
 - pruning all infrequent and non-closed branches

Frequency Computation

- **Operation**
 - Tid-set of the union of two itemsets, X_1 and X_2
 - Intersection of two tid-sets, $t(X_1)$ and $t(X_2)$

$$t(X_1 \cup X_2) = t(X_1) \cap t(X_2)$$

- **Example**
 - $X_1 = \{AC\}, \ X_2 = \{D\}$
 - $t(X_1 \cup X_2) = t(\{ACD\}) = \{45\}$
 - $t(X_1) \cap t(X_2) = \{1345\} \cap \{2456\} = \{45\}$

<table>
<thead>
<tr>
<th>T-ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, C, T, W</td>
</tr>
<tr>
<td>2</td>
<td>C, D, W</td>
</tr>
<tr>
<td>3</td>
<td>A, C, T, W</td>
</tr>
<tr>
<td>4</td>
<td>A, C, D, W</td>
</tr>
<tr>
<td>5</td>
<td>A, C, D, T, W</td>
</tr>
<tr>
<td>6</td>
<td>C, D, T</td>
</tr>
</tbody>
</table>
Pruning Strategy

Pruning
- Suppose two itemsets $X_1 \leq X_2$
 1. $t(X_1) = t(X_2)$ \rightarrow $t(X_1) \cap t(X_2) = t(X_1) = t(X_2)$
 \rightarrow Replace X_1 with $(X_1 \cup X_2)$, and prune X_2
 2. $t(X_1) \subset t(X_2)$ \rightarrow $t(X_1) \cap t(X_2) = t(X_1) \neq t(X_2)$
 \rightarrow Replace X_1 with $(X_1 \cup X_2)$, and keep X_2
 3. $t(X_1) \supset t(X_2)$ \rightarrow $t(X_1) \cap t(X_2) = t(X_2) \neq t(X_1)$
 \rightarrow Replace X_2 with $(X_1 \cup X_2)$, and keep X_1
 4. $t(X_1) \neq t(X_2)$ \rightarrow $t(X_1) \cap t(X_2) \neq t(X_1) \neq t(X_2)$
 \rightarrow Keep X_1 and X_2

Example of CHARM Algorithm

Subset Lattice

<table>
<thead>
<tr>
<th>T-ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, C, T, W</td>
</tr>
<tr>
<td>2</td>
<td>C, D, W</td>
</tr>
<tr>
<td>3</td>
<td>A, C, T, W</td>
</tr>
<tr>
<td>4</td>
<td>A, C, D, W</td>
</tr>
<tr>
<td>5</td>
<td>A, C, D, T, W</td>
</tr>
<tr>
<td>6</td>
<td>C, D, T</td>
</tr>
</tbody>
</table>

50% minimum support
Summary of CHARM Algorithm

- **Advantages**
 - No need multiple scan of transaction database
 → Revision and enhancement of Apriori algorithm
 - No loss of information

- **References**

CSI 4352, Introduction to Data Mining

Chapters 6 & 7, Frequent Pattern Mining

- Market Basket Problem
- Apriori Algorithm
- CHARM Algorithm
 - Advanced Frequent Pattern Mining
- Advanced Association Rule Mining
- Constraint-Based Association Mining