Chapter 2 and 3, Data Pre-processing

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

Why Need Data Pre-processing?

- **Incomplete Data**
 - Missing values, or Lack of attributes of interest

- **Noisy Data**
 - Errors, or Outliers

- **Redundant Data**
 - Duplicate data, or Duplicate attributes
 - e.g., Age = "47", Birthday = "01/07/1968"

- **Inconsistent Data**
 - Containing discrepancies in format or name
 - e.g., Rating by "1, 2, 3", Rating by "A, B, C"

- **Huge Volume of Data**
Importance

- **Lower Quality Data, Lower Quality Mining Results !!**
 - Mining quality depends on data quality as well as mining techniques.

- **Majority of Data Mining**
 - Data pre-processing comprises the majority of the works for data warehousing and data mining

Major Tasks

- **Data Cleaning**
 - Fill in missing values, smooth noisy data, remove outliers, remove redundancy, and resolve inconsistency

- **Data Integration**
 - Integration of multiple databases or files

- **Data Transformation**
 - Normalization and aggregation

- **Data Reduction**
 - Reducing representation in volume with similar analytical results
 - Discretization of continuous data
Chapter 2 and 3, Data Pre-processing

- General Data Characteristics
 - Descriptive Data Summarization
 - Data Cleaning
 - Data Integration
 - Data Transformation
 - Data Reduction

Data Types

- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data, e.g., text documents
 - Transaction data

- Ordered Data
 - Sequential data, e.g., transaction sequences, biological sequences
 - Temporal data, e.g., time-series data
 - Spatial data, e.g., maps

- Graph
 - WWW, internet
 - Social or information networks
 - Biological networks
Attribute Types

- **Nominal**
 - e.g., ID number, profession, zip code

- **Ordinal**
 - e.g., ranking, grades, sizes

- **Binary**
 - e.g., medical test (positive or negative)

- **Interval**
 - e.g., calendar dates, temperature, height

- **Ratio**
 - e.g., population, sales

Discrete vs. Continuous Attributes

- **Discrete Attribute**
 - Finite set of values
 - Sometimes, represented as integer values
 - Binary attributes are a special case of discrete attributes

- **Continuous Attribute**
 - Real numbers as values
 - Typically, represented as floating-point variables
 - In practice, shown as a finite number of digits
Characteristics of Data

- **Dimensionality**
 - Curse of dimensionality

- **Sparsity**
 - Lack of information

- **Resolution**
 - Patterns depending on the scale

- **Similarity**
 - Similarity measures for complex types of data

CSI 4352, Introduction to Data Mining

Chapter 2 and 3, Data Pre-processing

- General Data Characteristics
- Descriptive Data Summarization
- Data Cleaning
- Data Integration
- Data Transformation
- Data Reduction
Descriptive Data Mining

- **Motivation**
 - To better understand the properties of data distributions, e.g., central tendency, spread and variation

- **Measurements**
 - median, max, min, quantiles, outliers, etc.

- **Analysis Process**
 - Folding the measures into numeric dimensions
 - Graphic analysis on the transformed dimension space

Central Tendency Measures

- **Mean**
 - Weighted arithmetic mean:

 \[\bar{x} = \frac{\sum_{j=1}^{n} w_j x_j}{\sum_{j=1}^{n} w_j} \]
 - Trimmed mean: chopping extreme values

- **Median**
 - Middle value if odd number of values
 - Average of two middle values otherwise
 - Estimation by interpolation for grouped data:
 \[\text{median} = L_n + \left(\frac{N/2 - \sum \text{freq}_{med}}{\text{freq}_{med}} \right) \text{width} \]

- **Mode**
 - The value that occurs the most frequently in the data
 - Unimodal, bimodal, trimodal distribution
Central Tendency in Skewed Data

- **Symmetric Data**

- **Skewed Data**

Data Dispersion Measures

- **Quartiles and Outliers**
 - Quartiles: Q_1 (25th percentile), Q_3 (75th percentile)
 - Inter-quartile range: $IQR = Q_3 - Q_1$
 - Outliers: data with extreme low and high values
 usually, values lower/higher than $Q_1 - 1.5 \times IQR / Q_3 + 1.5 \times IQR$

- **Variance and Standard Deviation**
 - σ^2, σ in population:
 \[
 \sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^{n} x_i^2 - \mu^2
 \]
 - s^2, s by sampling:
 \[
 s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2 \right]
 \]

Degree of Freedom: # independent pieces of information

(= # independent measurement - # parameters)
Graphic Analysis

- **Boxplot**
 - Display of five-number summary

- **Histogram**
 - Display of tabulated frequencies

- **Quantile-Quantile (Q-Q) Plot**
 - Description of the relationship between two univariate distributions

- **Scatter Plot**
 - Description of the relationship between two attributes of a bivariate distribution

Boxplot Analysis

- **Five-number summary of a Distribution**
 - Minimum / \(Q_1 \) / Median / \(Q_3 \) / Maximum

- **Boxplot**
 - Represented as a box
 - The bottom of the box is \(Q_1 \)
 - The top of the box is \(Q_3 \)
 - The median is marked by a line
 - Whiskers: two lines outside of the box extend to minimum and maximum
Histogram Analysis

- **Histogram**
 - Univariate graphic method
 - Represented as a set of bars reflecting the frequencies of the discrete values
 - Grouping data values into classes if they are continuous

- **Boxplot vs. Histogram**
 - Often, histogram gives more information than boxplot

![Histogram Example](image1)

Quantile Plot Analysis

- **Quantile Plot**
 - Plots quantile information of the data (sorted in an ascending order)
 - Displays all the data

- **Q-Q (Quantile-Quantile) Plot**
 - Plots the quantiles of one univariate distribution against the quantiles of the other
 - Describes the relationship between two distributions

![Q-Q Plot Example](image2)
Scatter Plot Analysis

- **Scatter Plot**
 - Displays the points of bivariate data
 - Describes the relationship between two attributes (variables)

![Scatter Plot Diagram]

- **Positively correlated data**
- **Negatively correlated data**
- **Clusters**
- **Patterns**
- **Outliers**

CS 4352, Introduction to Data Mining

Chapter 2 and 3, Data Pre-processing

- General Data Characteristics
- Descriptive Data Summarization
 - **Data Cleaning**
- Data Integration
- Data Transformation
- Data Reduction