Gene Clustering & Classification

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

Overview

- Introduction to Gene Clustering
 - Partition-based Clustering Methods
 - Hierarchical Clustering Methods
 - Validation of Clustering
- Gene Classification & Sample Classification
What is Clustering?

- Cluster
 - A group of data objects
 - Similar (or related) to one another within the same group
 - Dissimilar (or unrelated) to the objects in different groups

- Clustering (or Cluster Analysis)
 - Finding similarities between data objects
 - Grouping similar data objects into the same clusters
 - Unsupervised learning: no pre-defined classes

- Applications
 - A stand-alone method for data analysis
 - A preprocessing step for other data analysis

Measuring Quality of Clustering

- High Quality Clusters have
 - High intra-class similarity: cohesiveness within clusters
 - Low inter-class similarity: separability between clusters

- Quality of Clustering Depends on
 - Clustering methods
 - Handling both cohesiveness and separability
 - Ability to discover hidden patterns
 - Defining “similar enough” – problem of determining a threshold
 - Data sets
 - Amount of data
 - Complexity of data type
 - High dimensionality
Gene Clustering

- **Definition**
 - Grouping the genes which have similar features

- **Purpose**
 - Finding a group of genes that perform the same functions

- **Features**
 - Sequence similarity
 - Motif inclusion
 - Structure similarity
 - Expression profile coherence
 - Interaction evidence

Microarray Experiment (1)

- **Microarrays**
 - Estimate gene expression levels under varying conditions / time points by measuring the amount of mRNA for that particular gene

- **Microarray Experiment Process**
 - Produce cDNA from mRNA (DNA is more stable)
 - Attach phosphor to cDNA to see when a particular gene is expressed
 - Different color phosphors are available to compare many samples at once
 - Hybridize cDNA over the microarray
 - Scan the microarray with a phosphor-illuminating laser
 - Illumination reveals transcribed genes
 - Scan microarray multiple times for the different color phosphor’s
Microarray Experiment (2)

Expression Data (1)

- **Microarray Results**
 - Green: expressed from controlled samples
 - Red: expressed from experimental samples
 - Yellow: expressed in both samples
 - Black: not expressed in either controlled or experimental samples

- **Expression Data**
 - The intensity of the colors is quantified into numeric values
 - Each gene has an expression value on each experimental condition or each time point

<table>
<thead>
<tr>
<th>Gene</th>
<th>Time X</th>
<th>Time Y</th>
<th>Time Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene 1</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Gene 2</td>
<td>10</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Gene 3</td>
<td>4</td>
<td>8.6</td>
<td>3</td>
</tr>
<tr>
<td>Gene 4</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Gene 5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Expression Data (2)

Data Conversion

Pairwise Distance Matrix

Clustering Expression Data

Cohesiveness and Separability Principles

Co-expression

- Coherent expression patterns of genes across experimental conditions or time points
- More co-expressed genes within the same clusters, and less co-expressed genes from different clusters
Distance / Similarity Measures

➤ Minkowski Distance
 • Given two data, \(X = \{x_1, x_2, \ldots, x_n\} \) and \(Y = \{y_1, y_2, \ldots, y_n\} \), on \(n \) dimensions,
 \[
 d = \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{1/p}
 \]
 • Euclidean distance when \(p=2 \), and Manhattan distance when \(p=1 \)

➤ Pearson Coefficient
 • Evaluates correlation between two data on \(n \) dimensions
 \[
 r = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}}
 \]
 - co-variance between \(X \) and \(Y \)
 - individual variance of \(X \) and \(Y \)
 • If \(r > 0 \), \(X \) and \(Y \) are positively correlated.
 • If \(r = 0 \), \(X \) and \(Y \) are independent.
 • If \(r < 0 \), \(X \) and \(Y \) are negatively correlated.

Overview

➤ Introduction to Gene Clustering
 • *Partition-Based Clustering Methods*
 • Hierarchical Clustering Methods
 • Validation of Clustering

➤ Gene Classification & Sample Classification
Partition-Based Methods

- Main Idea
 - Constructing the best partition of the data with \(n \) objects into \(k \) clusters

- Issue
 - Finding a partition that optimize the criterion of cluster quality:
 - high intra-class similarity (cohesiveness) and
 - low inter-class similarity (separability)

- Methods
 - Theoretical method: Enumerate exhaustively all possible partitions and select the best one
 - Heuristic method: \(k \)-means, \(k \)-medoids

\(k \)-Means

- Main Idea
 - Finding the best partition of \(n \) data objects into \(k \) clusters in which each object belongs to the cluster with the nearest mean

- Process
 1. Partition data objects randomly into \(k \) clusters.
 2. Compute the mean point of the objects in each cluster as a centroid
 3. Assign each object to the nearest centroid and generate \(k \) new clusters
 4. Repeat (2) and (3), until there is no change of the objects in each cluster
Example of k-Means

Random partition ($k=2$)

Compute cluster means

Re-assign objects

Compute cluster means

Re-assign objects

Strength and Weakness of k-Means

- **Strength**
 - Relatively efficient
 - time complexity $\mathcal{O}(n \text{ objects}, k \text{ clusters}, t \text{ iterations})$

- **Weakness**
 - Need to **specify** k, the number of clusters, in advance
 - Sensitive to **noise** and **outliers**
 - Not suitable to detect clusters with non-convex shapes
 - Sometimes fall into local optimum, not identifying global optimum of clusters
Overview

- Introduction to Gene Clustering
 - Partition-Based Clustering Methods
 - Hierarchical Clustering Methods
 - Validation of Clustering
- Gene Classification & Sample Classification

Hierarchical Methods

- Main Idea
 - Decomposing data objects into several levels of nested partitioning (tree of clusters)

 ![Hierarchical Clustering Diagram]

 - Bottom-up approach (agglomerative algorithm)
 - Top-down approach (divisive algorithm)
Agglomerative Algorithm

- **Process**
 - Start with all single-node clusters
 - Iteratively merge the closest (the most similar) clusters
 - Eventually, all nodes belong to one cluster.

Distance Measures between Clusters

- **Single-Link Distance:** \[d(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x, y) \]
- **Complete-Link Distance:** \[d(C_i, C_j) = \max_{x \in C_i, y \in C_j} d(x, y) \]
- **Average-Link Distance:** \[d(C_i, C_j) = \frac{1}{n_i n_j} \sum_{x \in C_i} \sum_{y \in C_j} d(x, y) \]
- **Centroid Distance:** \[d(C_i, C_j) = d(m_i, m_j) \] where \(m_i \) and \(m_j \) are means of \(C_i \) and \(C_j \)
Comparison of Distance Measures

- Single-Link Distance
- Complete-Link Distance
- Average-Link Distance
- Centroid Distance

Divisive Algorithm

- Process
 - Start with one single clusters with all nodes
 - Iteratively divide the farthest (the most dissimilar) clusters
 - Eventually, all clusters have a single node.
Strength and Weakness of Hierarchical Methods

- Strength
 - Not require the number of clusters, k, in advance

- Weakness
 - Require the stopping condition
 - Sensitive to noise
 - Not able to undo what was done previously
 - Not scalable, at least $O(n^2)$ where n objects

Overview

- Introduction to Gene Clustering
 - Partition-Based Clustering Methods
 - Hierarchical Clustering Methods
 - Validation of Clustering
 - Gene Classification & Sample Classification
Cluster Validation

- **Definition**
 - Assessing the quality of clustering results

- **Why Validating?**
 - To avoid finding clusters formed by chance
 - To compare clustering algorithms
 - To choose clustering parameters

- **Methods**
 - External index: when "ground truth" is available
 - Internal index: when "ground truth" is unavailable

Internal Index

- **Error Measures**
 - Absolute error = $|x_i - x'_i|$
 - Squared error = $(x_i - x'_i)^2$

- **Sum of Squared Error (SSE)**
 - Measure of cohesiveness by within-cluster sum of squared error
 \[WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2 \]
 - Measure of separability by between-cluster sum of squared error
 \[BSS = \sum_{i} |C_i| \cdot (m_i - m)^2 \]
 - Relationship between WSS and BSS?
External Index (1)

Notations
- \(N \): the total number of data objects
- \(C = \{C_1, C_2, \ldots, C_n\} \): the set of clusters reported by a clustering algorithm
- \(P = \{P_1, P_2, \ldots, P_m\} \): the set of "ground truth" clusters

Incident Matrix
- \((N \times N)\) matrix
- \(C_{ij} = 1 \) if two data objects \(O_i \) and \(O_j \) belong to the same cluster in \(C \)
- \(C_{ij} = 0 \) otherwise
- \(P_{ij} = 1 \) if \(O_i \) and \(O_j \) belong to the same "ground truth" cluster in \(P \)
- \(P_{ij} = 0 \) otherwise

External Index (2)

Result Categories
- \(SS \): \(C_{ij} = 1 \) and \(P_{ij} = 1 \) (agree)
- \(DD \): \(C_{ij} = 0 \) and \(P_{ij} = 0 \) (agree)
- \(SD \): \(C_{ij} = 1 \) and \(P_{ij} = 0 \) (disagree)
- \(DS \): \(C_{ij} = 0 \) and \(P_{ij} = 1 \) (disagree)

Rand Index
- \(\text{Rand} = \frac{|SS| + |DD|}{|SS| + |DD| + |SD| + |DS|} \)

Jaccard Index
- \(\text{Jaccard Coefficient} = \frac{|SS|}{|SS| + |SD| + |DS|} \)
f-Measure

- Recall & Precision
 - Comparison between an output cluster and a ground-truth cluster
 - Let an output cluster \(X\), and a ground-truth cluster \(Y\)
 - Recall (Sensitivity, or True positive rate) = \(\frac{|X \cap Y|}{|Y|}\)
 - Precision (Positive predictive value) = \(\frac{|X \cap Y|}{|X|}\)

- \(f\)-Measure
 - Harmonic mean of Recall and Precision
 - \(f\)-measure = \(2 \times \frac{\text{Recall} \times \text{Precision}}{\text{Recall} + \text{Precision}}\)

Statistical \(p\)-Value

- \(p\)-value of Hyper-Geometric Distribution
 - Let the set of all data objects, \(N\)
 - Let an output cluster \(X\), and a ground-truth cluster \(Y\)
 - Probability that at least \(k\) data objects in \(X\) are included in \(Y\)
 - \(\sum_{i=k}^{\min\{|Y|, |X|\}} \binom{|X|}{i} \binom{|N|-|Y|}{|X|-i} \binom{|Y|}{i} \binom{|N|-|Y|}{|X|-i}^{-1} \) where \(k = |X \cap Y|\)

- A low \(p\)-value indicates it is less probable that the cluster \(X\) is produced by chance
 - \(- \log(p)\) is usually used for clustering evaluation
Overview

- Introduction to Gene Clustering
 - Partition-Based Clustering Methods
 - Hierarchical Clustering Methods
 - Validation of Clustering
- Gene Classification & Sample Classification

Supervised vs. Unsupervised Learning

- Supervised Learning
 - Called classification
 - Training data (observations, measurement, etc.) are given
 - Training data include class labels predefined
 - Find rules or models of class labels of training data
 - New data are classified based on the rules or models

- Unsupervised Learning
 - Called clustering
 - No training data are given
 - New data are classified without any training data
Classification vs. Prediction

- **Classification**
 - Training class labels in attributes of a training data set
 - Predicts class labels of a new data set based on the rules or models of class labels of the training data set

- **Prediction**
 - Modeling continuous-valued functions for a data set
 - Predicts unknown or missing values in the data set

Gene Classification (1)

- **Definition**
 - Finding the functions of unknown genes by training expression data of known (functionally characterized) genes

- **Expression Data**
 - Expression levels (numeric values) for each gene across time points
 - Time-series expression data for each gene (Gene-Time expression data)
Gene Classification (2)

- Assumption
 - Genes having the same functions are co-expressed
 (co-expression: coherent expression patterns of genes across time points)

- Process
 1. Finding coherent patterns of time-series expression profiles for each class → Training step
 2. Matching the time-series expression profile of an unknown gene to the patterns → Predicting step

Time-Series Expression Data

- Examples

![Graphs showing expression patterns over time](image-url)
Sample Classification

- Definition
 - Finding the class (disease) of unknown samples by training expression data of known samples

- Expression Data
 - Expression levels (numeric values) for each gene across samples at a certain time point
 - Gene-Sample expression data

- Process
 1. Informative gene selection in a training data set
 2. Class prediction of unknown samples

Informative Gene Selection (1)

- Purpose
 - Eliminating irrelevant genes
 - Selecting significant (informative) genes for class prediction

- Examples
 - gene 1
 - gene 2
 - ideal case
Informative Gene Selection (2)

- Statistical Approach
 - Selects genes expressed more differently between 2 classes
 - Computes statistical information (mean, standard deviation) of expression values of the samples in each class
 - Measures the correlation of expressions between 2 classes for each gene
 \[P(g) = \frac{\mu_1(g) - \mu_2(g)}{\sigma_1(g) + \sigma_2(g)} \]
 - Ranks genes by the correlation metric

Informative Gene Selection (3)

- Example
Class Prediction

- Weighted Voting Approach
 - For each unknown sample, each informative gene votes for either class 1 or class 2, based on whether its expression value in the sample is closer to μ_1 or μ_2.
 - Computes the weighted vote of a gene g by $w(g)v(g)$

 \[
 w(g) = P(g) \\
 v(g) = |x(g) - (\mu_1(g) + \mu_2(g))/2|
 \]

 where $x(g)$ is the expression value of g.

Advanced Topics

- Sample Classification in Time-Series Data
 - Classifying samples using time-series expression data for each gene (gene-sample-time expression data)

- Bi-Clustering
 - Simultaneous clustering of both genes and conditions (or time points)
Questions?

- Lecture Slides are found on the Course Website,
 web.ecs.baylor.edu/faculty/cho/3360