Lecture 6, Pattern Matching & Finding

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

Overview

- Pattern Matching
 - Exhaustive Search
 - DFA Algorithm
 - KMP Algorithm
- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm
- Approximate Pattern Matching
- Pattern Finding
- Approximate Pattern Finding (Sequence Motif Finding)
Pattern Matching

- **Definition**
 - Given a text (string), finding all occurrences of a pattern (substring)
 - Given a DNA, RNA, or protein sequence, finding all occurrences of a specific repeat

- **Examples**
 - A T G G T C T A G G T C C T A G T G G T C

- **Applications**
 1. Homolog search in BLAST
 2. Sequence motif search
 - Repeats (substrings, patterns) often represent sequence motifs
 - Functional domains are often associated with repeats
 - Evolutionary path can be traced by repeats

Terminology

- **Prefix**
 - $S[1 .. j]$ is a prefix of a string $S[1 .. n]$ where $j \leq n$
 - X is a prefix of Y if $X \cdot Z = Y$ for some string Z

- **Suffix**
 - $S[i .. n]$ is a suffix of a string $S[1 .. n]$ where $1 \leq i$
 - X is a suffix of Y if $Z \cdot X = Y$ for some string Z

- **Substring**
 - A string of consecutive letters from S
 - $S[i .. j]$ is a substring of a string $S[1 .. n]$ where $1 \leq i$ and $j \leq n$
 - A substring of S is a prefix of a suffix of S

- **Empty String**
 - $S[i .. j]$ is an empty string where $i > j$
Properties

- Proper Prefix, Proper Suffix, Proper Substring
 - The proper prefix, suffix, or substring of a string S is a prefix, suffix, or substring that is not the empty string nor S itself.

- Main Properties
 - Reflexivity (But, not for proper prefix, proper suffix, proper substring)
 - Anti-symmetry (But, not for proper prefix, proper suffix, proper substring)
 - Transitivity

- Other Properties
 - If X is a suffix of Y, then $X \cdot Z$ is a suffix of $Y \cdot Z$ for some string Z.
 - If X is a suffix of Z, Y is a suffix of Z, and $|X| \leq |Y|$, then X is a suffix of Y.

Formulation of Pattern Matching Problem

- Goal
 - Finding all occurrences of a substring (length-m) in a string (length-n)

- Input
 - A substring $P = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ and a string $T = t_1 \cdot t_2 \cdot \ldots \cdot t_n$

- Output
 - All positions $1 \leq i \leq (n-m+1)$ such that the substring of T starting at i matches P
Naïve Approach

- Algorithm
 - Exhaustive search

NaïveMatching(T, P)

\[\begin{align*}
 n &\leftarrow \text{length}(T) \\
 m &\leftarrow \text{length}(P) \\
 &\text{for } i \leftarrow 1 \text{ to } n - m + 1 \\
 &\text{if } P[1..m] = T[i..(i+m)] \\
 &\text{then print } i
\end{align*}\]

- Example
 - \(T = \text{CTGCATC} \)
 - \(P = \text{GCAT} \)

- Runtime?

Deterministic Finite Automata (1)

- Definition
 - A device involving states and transitions among them in response to inputs

- Finite Automata \(M = (Q, q_0, A, \Sigma, \delta) \)
 - \(Q \): a finite set of states
 - \(q_0 \): a start state
 - \(A \): a set of accepting states
 - \(\Sigma \): a finite set of input characters
 - \(\delta \): transition function from \(Q \times \Sigma \) into \(Q \)

- Acceptance
 - Automaton accepts the input string if it ends up in an accepting state
 - Automaton rejects the input string if it doesn’t end up in an accepting state
Applications
- Lexical analysis of a compiler
- System for verifying the correctness of circuits or protocols

Examples
- Verifying inputs
- Constructing automata

Pattern Matching with DFA
(1) Constructs an automaton for the substring (pattern) P
(2) Searches P by reading the string (text) T on the automaton

Constructing DFA (1)

Suffix Function
- Suffix function $\sigma(X)$ for P: a mapping to the length of the longest prefix of P that is a suffix of X
- e.g., P="abc", $\sigma(\text{"cbaca"})=?$, $\sigma(\text{"ccab"})=?$

Process
- Given a substring (pattern) P with length m
- Makes the set of states $Q = \{0, 1, \ldots, m\}$, with the state 0 as q_0, and the state m as the only accepting state
- Defines the transition function δ as
 $$\delta(q, a) = \sigma(P[1..q] \cdot a)$$
Constructing DFA (2)

- **Example**
 - $P=\text{"ababaa"}$, $\Sigma=\{a,b\}$

- **Runtime**

Searching Pattern using DFA (1)

- **Process**
 - Given an input string T having the letters in Σ,
 - Starts at the state q_0,
 - Reads the string T, character by character, changing state after each character read

- **Pattern Matching**
 - Automaton finds the substring P from T if it reaches an accepting state

- **Example**
 - $P=\text{"ababaa"}$, $\Sigma=\{a,b\}$
 - $T=\text{"aababaababaabababaa"}$
Searching Pattern using DFA (2)

Algorithm

\[
\text{AutomataMatching}(T, P, M)
\]

\[
u \leftarrow \text{length}(T)
\]
\[
w \leftarrow \text{length}(P)
\]
\[
q \leftarrow q_0
\]
\[
\text{for } i \leftarrow 1 \text{ to } n
\]
\[
q \leftarrow \delta(q, T[i])
\]
\[
\text{if } q \in A
\]
\[
\text{then print } (i - m + 1)
\]

Runtime ?

Total Runtime of Pattern Matching with DFA ?

Pattern Shifting

Backgrounds

- \(T[1 .. n], P[1 .. m]\)
- Given \(P[1 .. q]\) (where \(q \leq m\)) matches \(T[(s+1) .. (s+q)]\), what is the least shift \(s'\) (where \(s' > s\)) such that \(P[1 .. k] = T[(s'+1) .. (s'+k)]\) where \(s'+k = s+q\) ?
Prefix Function

- Prefix Function
 - Prefix function $\pi(q)$ for P: a mapping to the length of the longest prefix of P that is a proper suffix of $P[1..q]$.

Example

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[i]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$\pi(i)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

$\pi(5)=3$

$\pi(4)=2$

$\pi(2)=0$

Algorithm

```plaintext
KMP-MATCHING(T, P, $\pi$)

n ← length(T)
m ← length(P)
q ← 0

for i ← 1 to n
  while q > 0 and P[q+1] ≠ T[i]
    q ← $\pi[q]$
  if P[q+1] = T[i]
    then q ← q + 1
  if q = m
    then print (i - m + 1) and q ← $\pi[q]$
```

Runtime?
Knuth-Morris-Pratt (KMP) Algorithm (2)

- Algorithm of Prefix Function

  ```
  PREFIX_FUNCTION(P)
  m ← length(P)
  π[1] ← 0
  k ← 0
  for q ← 2 to m
    while k > 0 and P[k+1] ≠ P[q]
      k ← π[k]
    if P[k+1] = P[q]
      k ← k + 1
    π[q] ← k
  return π
  ```

- Runtime ?

- Total Runtime of KMP Algorithm ?

Overview

- Pattern Matching
 - Exhaustive Search
 - DFA Algorithm
 - KMP Algorithm

- *Multiple Pattern Matching*
 - AC Algorithm
 - Weiner’s Algorithm

- Approximate Pattern Matching

- Pattern Finding

- Approximate Pattern Finding (Sequence Motif Finding)
Multiple Pattern Matching

- Motivation
 - Finding matches of multiple patterns from a text at the same time
 - Finding all occurrences of multiple patterns at the same time in a DNA or protein sequence improves efficiency for homolog search

- Examples
 - ATGGTCTAGGTGCTAGTG
 - $P = \{\text{GGTC, CTAG, TGGT}\}$

Formulation of Multiple Pattern Matching Problem

- Goal
 - Finding all occurrences of any in a set of substrings (length-m) in a string (length-n)

- Input
 - A set of k substrings P_1, P_2, ..., P_k and a string $T = t_1 \cdot t_2 \cdot \ldots \cdot t_n$

- Output
 - All positions $1 \leq i \leq n$ such that a substring of T starting at i matches P_j where $1 \leq j \leq k$
Extension of Pattern Matching

- Extension of Naïve Approach
 - Naïve string matching k times
 - Runtime ?

- Extension of Other String Matching Algorithms
 - KMP string matching k times
 - Runtime ?

- Direction
 - Advanced data structure
 - Advanced algorithm

Prefix Tree (1)

- Prefix Tree
 - Data structure to manage a set of substrings (patterns), \(P \)
 - Each path from the root represents each pattern
 - Also called “keyword tree” or “trie”

- Features
 - Each edge is labeled with a character
 - Any two or more edges to child nodes from a parent node have different labels
 - Each node \(v \) is labeled as the concatenation of edge labels on the path from the root to \(v \) (the node label is denoted by \(L(v) \))
 - For each \(P_i \in P \), there is a node \(v \) such that \(L(v) = P_i \)
 - \(L(v) \) for any leaf node \(v \) equals some \(P_j \) where \(P_j \in P \)
Prefix Tree (2)

- Example
 - $P = \{ \text{TG, ATG, TCA, TGAC} \}$

- Runtime of Prefix Tree Construction?

Extension of Finite Automata (1)

- Multiple String Matching with Finite Automata (Aho-Corasick Algorithm)
 1. Constructs an automaton for the set of substrings (patterns), P
 2. Searches all substrings in the string (text) T by the automaton

- Finite Automata, $M=(Q, q_0, A, \Sigma, \delta)$, on a Prefix Tree
 - Q: the set of nodes in the prefix tree
 - q_0: the root in the prefix tree
 - A: the nodes marked in the prefix tree
 - Σ: the set of all distinct characters in P
 - δ: transition functions
 - goto functions (g)
 - failure functions (f)
Extension of Finite Automata (2)

- **Goto Function**
 - $g(q_i,a)$: a mapping to the state entered from the current state q_i
 by matching the target character a
 - If the edge (q_i,q_j) is labeled by a, and q_i is a parent node of q_j in the
 prefix tree, then $g(q_i,a) = q_j$
 - Otherwise, $g(q_i,a) = \emptyset$, except $g(q_0,a) = q_0$

- **Failure Function**
 - $f(q_i) = \pi(L(q_i))$: a mapping to the state of the longest prefix of
 some pattern in P, which is a proper suffix of $L(q_i)$

Example of DFA-like Structure

- **Example**
 - $P = \{ \text{TG, ATG, TCA, TGAC} \}$

![DFA-like Structure Diagram]
Searching Multiple Patterns by DFA-like Structure

- **Process**
 - Given an input string T having the letters in Σ,
 - Starts at the state q_0
 - Reads the string T, character by character, changing state after each character read

- **Multiple String Matching**
 - Automaton finds a substring P_j in P from T
 - if it reaches the accepting state corresponding to P_j

- **Example**
 - $P = \{ \text{TG, ATG, TCA, TGAC} \}$
 - $T = \text{"ATCATGTGAC"}$

Aho-Corasick (AC) Algorithm (1)

- **Algorithm**

```
AC-MULTIPLE-MATCHING(T, \{P_1, P_2, \ldots, P_k\}, M)

n ← length(T)
for j = 1 to k
    m_j ← length(P_j)
    q ← q_0
for i = 1 to n
    while g(q, T[i]) = ∅
        q ← f(q)
    q ← g(q, T[i])
    if q = a_j ∈ A
        then print (i - m_j + 1)
```

- **Runtime ?**
Constructing DFA-like Structure

- Process
 - Constructs the prefix tree for P
 - all nodes in the prefix tree $\rightarrow Q$
 - the root node $\rightarrow q_0$
 - Marks all accepting states for A
 - Makes goto function for each state
 - Makes failure function for each state as $f(q) = \pi(L(q))$

Aho-Corasick (AC) Algorithm (2)

- Algorithm of Failure Function

\[
\text{FAILUREFUNCTION}(M,g)
\]
\[
Q \leftarrow \text{empty queue}
\]
\[
\text{for } a \in \Sigma
\]
\[
\text{if } g(q_0,a) = q \neq q_0
\]
\[
f(q) \leftarrow 0 \text{ and enqueue}(q,Q)
\]
\[
\text{while } Q \neq \emptyset
\]
\[
v \leftarrow \text{dequeue}(Q)
\]
\[
\text{for } a \in \Sigma
\]
\[
\text{if } g(r,a) = u \neq \emptyset
\]
\[
\text{enqueue}(u,Q) \text{ and } v \leftarrow f(v)
\]
\[
\text{while } g(v,a) = \emptyset
\]
\[
v \leftarrow f(v)
\]
\[
f(u) \leftarrow g(v,a)
\]
\[
\text{return } f
\]

- Runtime ?

- Total Runtime of AC Algorithm ?
Suffix Tree (1)

➢ Suffix Tree
 ▪ Data structure to manage a string (text), \(T \)
 ▪ Each path from the root represents each suffix of \(T \)
 ▪ Also called “collapsed keyword tree”

➢ Features
 ▪ Each edge is labeled with a string (a substring of \(T \))
 ▪ All internal nodes have at least two outgoing edges
 ➞ Similar to prefix trees, but edges that form a linear path are collapsed
 ▪ Leaf nodes are labeled with the index of the pattern (starting position)

Suffix Tree (2)

➢ Examples
 ▪ \(T = \) ATCATG
 ▪ TCATG
 ▪ CATG
 ▪ ATG
 ▪ TG
 ▪ G

➢ Runtime of Suffix Tree
 Construction ?
 ▪ Naïve approach

(a) Keyword tree
(b) Suffix tree
Constructing Suffix Tree (1)

- Weiner’s Algorithm
 - Linear-time suffix tree construction algorithm

- Substring Function
 - Substring function $\theta(i)$ for T: a mapping to the position and length of the substring of $T[(i+1) . . n]$ that matches the longest prefix of $T[i .. n]$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>$\theta(i)$</td>
<td>4/2</td>
<td>5/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

Constructing Suffix Tree (2)

- Process
 - Read each character in T backwards
 - Attach the suffix $T[i .. n]$ to the nodes labeled with the position of $\theta(i)$
 - Converting the edge with the length of $\theta(i)$, and adding new branches
 - Example, $T=$"ATCATG"

```
root
  /   \
 G    T
  |    |
  A    CATG
```

```
  /   \
 G    CATG
  |    |
  CATG
```
Multiple Matching with Suffix Tree

- Process
 - Build a suffix tree for \(T \)
 - Thread each pattern \(P_i \) where \(1 \leq i \leq k \) through the suffix tree
 - If threading is complete, output all labels of leaf nodes

- Example of Threading
 - \(T = \) "ATGCATACATGG"
 - \(P_i = \) "ATG"

- Runtime ?

Overview

- Pattern Matching
 - Exhaustive Search
 - DFA Algorithm
 - KMP Algorithm

- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm

- Approximate Pattern Matching

- Pattern Finding

- Approximate Pattern Finding (Sequence Motif Finding)
Exact Matching vs. Approximate Matching

- **Exact Matching**

 \[T = \text{agcctcgatgtaagtcagtagtcacctacctactcttacgatgcataca} \]

 \[P = "\text{cgatgt}" \]

- **Approximate Matching (Inexact Matching)**

 \[T = \text{agcctcgatgtaagtcagtagtcacctacctactcttacgatgcataca} \]

 \[P = "\text{cgatgt}" \]

Formulation of Approximate Matching Problem

- **Goal**

 Finding all approximate occurrences of a substring (length-\(m\)) in a string (length-\(n\))

- **Input**

 - A substring \(P = p_1, \ldots, p_m\), a string \(T = t_1, \ldots, t_n\), and the maximum number mismatches, \(k\)

- **Output**

 - All positions \(1 \leq i \leq (n-m+1)\) such that \(P\) and the substring of \(T\) starting at \(i\) have at most \(k\) mismatches
Naïve Approach

- Algorithm
 - Exhaustive search

    ```
    APPROXIMATEMATCHING(T, P, k)
    n ← length(T)
    m ← length(P)
    for i ← 1 to n - m + 1
      mismatch ← 0
      for j ← 1 to m
        if T[i + j - 1] ≠ P[j]
          then mismatch ← mismatch + 1
      if mismatch ≤ k
        then print i
    ```

- Runtime ?

Dynamic Programming

- Algorithm
 - Count mismatches, \(D(i, j) \), between \(P[i] \) and \(T[j] \)
 - Find all positions \(i \) such that the number of mismatches between \(P[1..m] \) and \(T[i..(i+m-1)] \) is less than or equals to \(k \)

 \[
 D(i, j) = \begin{cases}
 D(i - 1, j - 1) + 0 & \text{if } P[i] = T[j] \\
 D(i - 1, j - 1) + 1 & \text{otherwise}
 \end{cases}
 \]

- Example
 - \(T = "AGCCTTGAT" \), \(P = "GCAT" \), \(k=2 \)

- Runtime ?
Overview

- Pattern Matching
 - Exhaustive Search
 - FA Algorithm
 - KMP Algorithm
- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm
- Approximate Pattern Matching
- Pattern Finding
- Motif Finding (Approximate Pattern Finding)

Pattern Matching vs. Pattern Finding

- Pattern Matching
 - Given a set of known patterns (motifs),
 - Find all occurrences in a DNA or protein sequence
 - Determine function of the DNA or protein sequence

- Pattern Finding
 - Given a set of known DNA or protein sequences,
 - Find patterns (motifs) across the DNA or protein sequences
Example of Pattern Finding

- **Example**
 - "acgtacgt" occurs in all 5 sequences (100%)

- **Challenges**
 - We do not know how the pattern looks like ("random" patterns)
 - We do not know where the pattern is located in each gene sequence

Formulation of Pattern Finding Problem

- **Goal**
 - Finding all occurrences of substrings (length-m) that appear in all strings (length-n)

- **Input**
 - A set of k strings T_1, T_2, ..., T_k and the length of the substring, m

- **Output**
 - The set of starting position vectors, $s = (s_1, s_2, ..., s_k)$, of the substrings that appear in all k strings
Naïve Approach

- Algorithm
 - Exhaustive search among all possible s

```algorithm
NAIVEFINDING($T_1, T_2, \ldots, T_k, n, m$)
for $s = (1, 1, \ldots, 1)$ to $(n-m+1, \ldots, n-m+1)$
if $T_1[s_1, \ldots, s_1+m-1] = T_2[s_2, \ldots, s_2+m-1] = \cdots = T_k(s_k, \ldots, s_k+m-1)$
then print $s$
```

- Runtime ?

Alternative Naïve Approach

- Algorithm
 - Exhaustive search among all possible combinations of characters
 - Practical in biological applications

- Search Tree
 - Example where $m=2$ in DNA sequences

```
```

- Runtime?
Anti-Monotonic Approach

- Anti-Monotonic Property
 - If a set (a string) violates a rule or a constraint (a pattern), then all super-sets (super-strings) violate it

- Process of Pattern Finding
 - Finding the patterns (substrings) by increment of their length
 - If a sub-pattern does not appear in all strings T_i where $1 \leq i \leq k$, do not process further its super-patterns

Overview

- Pattern Matching
 - Exhaustive Search
 - FA Algorithm
 - KMP Algorithm

- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm

- Approximate Pattern Matching

- Pattern Finding

- Motif Finding (Approximate Pattern Finding)
Approximate Pattern Finding

- Example

 \[T_1 = \text{cctgatagcgtatctgc} \text{t} \text{ccacgtacg} \text{tagtctctg} \text{tg} \text{gcgatct} \text{ct} \text{agcgtttc} \text{aaccat} \]
 \[T_2 = \text{agta} \text{ctgtggtacat} \text{ttgtagatgctagctacg} \text{p} \text{h} \text{atacccgccacctg} \text{aanacacgcct} \text{agaaccagagatgc} \]
 \[T_3 = \text{aaacgtacgtgcaccctc} \text{ttcttcgctctggc} \text{caaccagctggtctgctat} \text{agagcgaaaatttt} \]
 \[T_4 = \text{agccctccgatgtaa} \text{gctagctgtaa} \text{cgtatattacgtgctcc} \text{aaccctaat} \text{acatctttacgtaacgtat} \text{aca} \]
 \[T_5 = \text{ctgttat} \text{acacgcgtctatgggc} \text{gtatgctctgc} \text{tacgctga} \text{taccttaacgtaacgtc} \]

 "acgtacgt" occurs in no sequences (0%) after mutations

- Challenges

 - We do not know how the motif looks like ("random" motifs)
 - We do not know where the motif is located in each gene sequence
 - Motifs can differ slightly from one gene to another by mutations

Consensus Pattern & Consensus Score

- Profiles

 - Frequency of each character on each column of \(s \)

 \[
 \begin{array}{ccccccc}
 T & A & C & G & T & A & C \\
 A & 3 & 0 & 1 & 0 & 3 & 11 \\
 C & 2 & 4 & 0 & 0 & 1 & 4 \\
 G & 0 & 1 & 4 & 0 & 0 & 3 \\
 T & 0 & 0 & 0 & 5 & 1 & 0 \\
 \end{array}
 \]

- Consensus Pattern

 - A string such that each column has the character with the highest frequency

 \[\text{Consensus} \: A \: C \: G \: T \: A \: C \: G \: T \]

- Consensus Score

 - \(C(i) \): the largest count in column \(i \)

 \[C_i(s) = \sum_{i=1}^{m} C(s_i) \]

 \[\text{Consensus} \: A \: C \: G \: T \: A \: C \: G \: T \]
Formulation of Motif Finding Problem (1)

- **Goal**
 - Finding approximate occurrences of substrings (length-\(m\)) from the set of strings (length-\(n\))

- **Input**
 - A set of \(k\) strings \(T_1, T_2, ..., T_k\) and the length of the substring, \(m\)

- **Output**
 - The starting position vector, \(s = (s_1, s_2, ..., s_k)\), of the substrings that maximize the consensus score over all \(k\) strings

Naïve Approach

- **Algorithm**
 - Exhaustive search

\[
\begin{align*}
\text{NAIVE-MOTIF-FINDING} & (\{T_1, T_2, ..., T_k\}, n, m) \\
\text{score} & ← 0 \\
\text{pos} & ← (0, 0, ..., 0) \\
\text{for} \ s = (1, 1, ..., 1) \ \text{to} \ (n - m + 1, ..., n - m + 1) \\
\text{if} \ C_T(s) > \text{score} \\
\text{then} \ \text{score} & ← C_T(s) \ \text{and} \ \text{pos} ← s \\
\text{return} \ \text{pos}
\end{align*}
\]

- **Runtime** ?
Total Distance

- **Definition**
 - \(d_H(u,v) \): hamming distance between two strings, \(u \) and \(v \)
 - Given a pattern \(P \), total distance, \(d_T(P,s) = \sum_{i=1}^{k} d_H(P,T|s_i, \ldots, (s_i + m - 1)|) \)

- **Example**
 - \(P = "ATGCAACT" \), \(s = (s_1, s_2, s_3) \)
 - \(T_1[s_1,..,(s_1+7)] = "ATCCAGCT" \)
 - \(T_2[s_2,..,(s_2+7)] = "AAGCAACC" \)
 - \(T_3[s_3,..,(s_3+7)] = "ATGCCATT" \)
 - \(d(P,s) = ? \)

- **Relationship between Total Distance and Consensus Score?**

Formulation of Motif Finding Problem (2)

- **Goal**
 - Finding approximate occurrences of substrings (length-\(m \)) from the set of strings (length-\(n \))

- **Input**
 - A set of \(k \) strings \(T_1, T_2, \ldots, T_k \) and the length of the substring, \(m \)

- **Output**
 - The starting position vector, \(s = (s_1, s_2, \ldots, s_k) \), of the substrings that minimize the total distance over all \(k \) strings
Naïve Approach

- Algorithm
 - Exhaustive search

\[
\text{NaiveMotifFinding}\left(\{T_1, T_2, \ldots, T_k\}, n, m\right) \\
\text{dist} \leftarrow \infty \\
\text{for each pattern } P \\
\text{for each } i \\
\quad \text{find } \min d_H(P, T[x, \ldots, x+m-1]) \\
\quad s_i \leftarrow x \\
\quad \text{if } d_T(P, s) < \text{dist} \\
\quad \quad \text{then dist} \leftarrow d_T(P, s) \text{ and pos} \leftarrow a \\
\text{return pos}
\]

- Runtime?

Branch-And-Bound Approach

- Process
 - Run the naïve motif finding algorithm with \(m'\) where \(m' < m\)
 - Output all starting position vectors \(s\) where \(d_T(P, s) < \text{max threshold}\)
 - Run the naïve motif finding algorithm with \(m\) for \(s\)

- Problem?
 - Trade-off in efficiency vs. accuracy
Questions?

- Lecture Slides are found on the Course Website,
 web.ecs.baylor.edu/faculty/cho/3360