Overview

- **Pattern Matching**
 - Exhaustive Search
 - DFA-Based Search Algorithm
 - KMP Algorithm
- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm
- Approximate Pattern Matching
Pattern Matching

- Definition
 - Given a text (string), finding all occurrences of a pattern (substring)
 - Given a DNA, RNA, or protein sequence, finding all occurrences of a specific repeat

- Examples
 - A T G G T C T A G G T C C T A G T G G T C

- Applications
 1. Homolog search in BLAST
 2. Sequence motif search
 - Repeats (substrings, patterns) often represent sequence motifs
 - Functional domains are often associated with repeats
 - Evolutionary path can be traced by repeats

Terminology

- Prefix
 - $S[1..j]$ is a prefix of a string $S[1..n]$ where $j \leq n$
 - X is a prefix of Y if $X \cdot Z = Y$ for some string Z

- Suffix
 - $S[i..n]$ is a suffix of a string $S[1..n]$ where $1 \leq i$
 - X is a suffix of Y if $Z \cdot X = Y$ for some string Z

- Substring
 - A string of consecutive letters from S
 - $S[i..j]$ is a substring of a string $S[1..n]$ where $1 \leq i$ and $j \leq n$
 - A substring of S is a prefix of a suffix of S

- Empty String
 - $S[i..j]$ is an empty string where $i > j$
Properties

➢ Proper Prefix, Proper Suffix, Proper Substring
 ▪ The proper prefix, suffix, or substring of a string S is a prefix, suffix, or substring that is not the empty string nor S itself

➢ Main Properties
 ▪ Reflexivity (But, not for proper prefix, proper suffix, proper substring)
 ▪ Anti-symmetry (But, not for proper prefix, proper suffix, proper substring)
 ▪ Transitivity

➢ Other Properties
 ▪ If X is a suffix of Y, then X*Z is a suffix of Y*Z for some string Z
 ▪ If X is a suffix of Z, Y is a suffix of Z, and |X| ≤ |Y|, then X is a suffix of Y

Formulation of Pattern Matching Problem

➢ Goal
 ▪ Finding all occurrences of a substring (length-m) in a string (length-n)

➢ Input
 ▪ A substring \(P = p_1 \cdot p_2 \cdot ... \cdot p_m \) and a string \(T = t_1 \cdot t_2 \cdot ... \cdot t_n \)

➢ Output
 ▪ All positions \(1 \leq i \leq (n-m+1) \) such that the substring of \(T \) starting at \(i \) matches \(P \)
Naïve Approach

- Algorithm
 - Exhaustive search

 \[
 \text{NaïveMatching}(T, P) \\
 n \leftarrow \text{length}(T) \\
 m \leftarrow \text{length}(P) \\
 \text{for } i \leftarrow 1 \text{ to } n - m + 1 \\
 \quad \text{if } P[1..m] = T[|..(i+m)] \\
 \quad \quad \text{then print } i \\
 \]

- Example
 - \(T = \text{CTGCATC} \)
 - \(P = \text{GCAT} \)

 \[
 \begin{array}{ccccccc}
 \text{CTGCATC} & \text{CTGCATC} & \text{CTGCATC} & \text{CTGCATC} & \text{CTGCATC} & \text{CTGCATC} & \text{CTGCATC} \\
 \text{GCAT} & \text{GCAT} & \text{GCAT} & \text{GCAT} & \text{GCAT} & \text{GCAT} & \text{GCAT} \\
 \end{array}
 \]

- Runtime ?

Pattern Matching Using DFA

- Pattern Matching by DFA
 1. Constructs an automaton for the substring (pattern) \(P \)
 2. Searches \(P \) by reading the string (text) \(T \) on the automaton

- Suffix Function
 - Suffix function \(\sigma(X) \) for \(P \): a mapping to the length of the longest prefix of \(P \) that is a suffix of \(X \)
 - e.g., \(P = \text{"abc"}, \sigma(\text{"cbaca"}) = ? \), \(\sigma(\text{"ccab"}) = ? \)
Constructing DFA

- Process
 - Given a substring (pattern) P with length m
 - Makes the set of states $Q = \{0, 1, \ldots, m\}$, with the state 0 as q_0, and the state m as the only accepting state
 - Defines the transition function δ as
 \[\delta(q, a) = \sigma(P[1..q]a) \]

- Example
 - $P=\text{“ababaa”}$, $\Sigma=\{a, b\}$

- Runtime ?

DFA-Based Search (1)

- Process
 - Given an input string T having the letters in Σ,
 - Starts at the state q_0
 - Reads the string T, character by character, changing state after each character read

- Pattern Matching
 - Automaton finds the substring P from T if it reaches an accepting state

- Example
 - $P=\text{“ababaa”}$, $\Sigma=\{a, b\}$
 - $T=\text{“aababaababaabababaa”}$
DFA-Based Search (2)

- Algorithm

```plaintext
AUTOMATAMATCHING(T, P, M)

n ← length(T)
m ← length(P)
q ← q₀
for i ← 1 to n
q ← δ(q, T[i])
if q ∈ A
 then print (i - m + 1)
```

- Runtime ?

- Total Runtime of DFA-Based Search ?

Pattern Shifting

- Backgrounds

```
  b a c b a b a b a c b a b  T
  s  a b a b a c a

  b a c b a b a b a b a b c b a b  T
  s'=s+2  a b a b a c a
```

- \(T[1..n] \), \(P[1..m] \)
- Given \(P[1..q] \) (where \(q ≤ m \)) matches \(T[(s+1)..(s+q)] \), what is the least shift \(s' \) (where \(s'>s \)) such that

\[
P[1..k] = T[(s'+1)..(s'+k)] \quad \text{where} \quad s'+k = s+q
\]
Prefix Function

- Prefix Function
 - Prefix function \(\pi(q) \) for \(P \): a mapping to the length of the longest prefix of \(P \) that is a proper suffix of \(P[1..q] \)

Example

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P[i])</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>(\pi(i))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Knuth-Morris-Pratt (KMP) Algorithm (1)

- Algorithm

  ```
  KMP-MATCHING(T, P, \pi)
  n ← length(T)
  m ← length(P)
  q ← 0
  for \( i ← 1 \) to \( n \)
      while \( q > 0 \) and \( P[q+1] \neq T[i] \)
          \( q ← \pi[q] \)
      if \( P[q+1] = T[i] \)
          then \( q ← q + 1 \)
      if \( q = m \)
          then print \((i − m + 1) \) and \( q ← \pi[q] \)
  ```

- Runtime ?
Knuth-Morris-Pratt (KMP) Algorithm (2)

- Algorithm of Prefix Function

```plaintext
prefixFunction(P)
    m ← length(P)
    π[i] ← 0
    k ← 0
    for q ← 2 to m
        while k > 0 and P[k+1] ≠ P[q]
            k ← π[k]
        if P[k+1] = P[q]
            k ← k + 1
            π[q] ← k
    return π
```

- Runtime ?

- Total Runtime of KMP Algorithm ?

Overview

- Pattern Matching
 - Exhaustive Search
 - DFA-Based Search Algorithm
 - KMP Algorithm

- Multiple Pattern Matching
 - AC Algorithm
 - Weiner’s Algorithm

- Approximate Pattern Matching
Multiple Pattern Matching

- **Motivation**
 - Finding matches of multiple patterns from a text at the same time
 - Finding all occurrences of multiple patterns at the same time in a DNA or protein sequence improves efficiency for homolog search

- **Examples**
 - ATGGTCTAGGTCCTAGTG
 - \(P = \{ GGTC, CTAG, TGGT \} \)

Formulation of Multiple Pattern Matching Problem

- **Goal**
 - Finding all occurrences of any in a set of substrings (length-\(m \)) in a string (length-\(n \))

- **Input**
 - A set of \(k \) substrings \(P_1, P_2, \ldots, P_k \) and a string \(T = t_1 \cdot t_2 \cdot \ldots \cdot t_n \)

- **Output**
 - All positions \(1 \leq i \leq n \) such that a substring of \(T \) starting at \(i \) matches \(P_j \) where \(1 \leq j \leq k \)
Extension of Pattern Matching

➢ Extension of Naïve Approach
 ▪ Naïve string matching k times
 ▪ Runtime ?

➢ Extension of Other String Matching Algorithms
 ▪ KMP string matching k times
 ▪ Runtime ?

➢ Direction
 ▪ Advanced data structure
 ▪ Advanced algorithm

Prefix Tree (1)

➢ Prefix Tree
 ▪ Data structure to manage a set of substrings (patterns), \(P \)
 ▪ Each path from the root represents each pattern
 ▪ Also called "keyword tree" or "trie"

➢ Features
 ▪ Each edge is labeled with a character
 ▪ Any two or more edges to child nodes from a parent node have different labels
 ▪ Each node \(v \) is labeled as the concatenation of edge labels on the path from the root to \(v \) (the node label is denoted by \(L(v) \))
 ▪ For each \(P_i \in P \), there is a node \(v \) such that \(L(v)=P_i \)
 ▪ \(L(v) \) for any leaf node \(v \) equals some \(P_j \) where \(P_j \in P \)
Prefix Tree (2)

- Example
 - $P = \{ TG, ATG, TCA, TGAC \}$

- Runtime of Prefix Tree Construction?

Extension of Finite Automata (1)

- Multiple String Matching with Finite Automata (Aho-Corasick Algorithm)
 1. Constructs an automaton for the set of substrings (patterns), P
 2. Searches all substrings in the string (text) T by the automaton

- Finite Automata, $M=(Q, q_0, A, \Sigma, \delta)$, on a Prefix Tree
 - Q: the set of nodes in the prefix tree
 - q_0: the root in the prefix tree
 - A: the nodes marked in the prefix tree
 - Σ: the set of all distinct characters in P
 - δ: transition functions
 - goto functions (g)
 - failure functions (f)
Extension of Finite Automata (2)

- **Goto Function**
 - $g(q_i, a)$: a mapping to the state entered from the current state q_i by matching the target character a
 - If the edge (q_i, q_j) is labeled by a, and q_i is a parent node of q_j in the prefix tree, then $g(q_i, a) = q_j$
 - Otherwise, $g(q_i, a) = \emptyset$, except $g(q_0, a) = q_0$

- **Failure Function**
 - $f(q_i) = \pi(L(q_i))$: a mapping to the state of the longest prefix of some pattern in P, which is a proper suffix of $L(q_i)$

Example of DFA-like Structure

- **Example**
 - $P = \{ \text{TG}, \text{ATG}, \text{TCA}, \text{TGAC} \}$

![Diagram of DFA-like Structure]
Searching Multiple Patterns by DFA-like Structure

➢ Process
 ▪ Given an input string T having the letters in Σ,
 ▪ Starts at the state q_0
 ▪ Reads the string T, character by character, changing state after each character read

➢ Multiple String Matching
 ▪ Automaton finds a substring P_j in P from T
 if it reaches the accepting state corresponding to P_j

➢ Example
 ▪ $P = \{ \text{TG, ATG, TCA, TGAC} \}$
 ▪ $T = \text{"ATCATGTGAC"}$

Aho-Corasick (AC) Algorithm (1)

➢ Algorithm

\[
\begin{align*}
\text{AC-MULTIPLE-MATCHING} &: (T, \{ P_1, P_2, \ldots, P_k \}, M) \\
n &\leftarrow \text{length}(T) \\
\text{for } j = 1 \text{ to } k \\
m_j &\leftarrow \text{length}(P_j) \\
q &\leftarrow q_0 \\
\text{for } i = 1 \text{ to } n \\
\text{while } g(q, T[i]) = \emptyset \\
q &\leftarrow f(q) \\
q &\leftarrow g(q, T[i]) \\
\text{if } q = a_j \in A \\
\text{then print } (i - m_j + 1)
\end{align*}
\]

➢ Runtime?
Constructing DFA-like Structure

- Process
 - Constructs the prefix tree for P
 - all nodes in the prefix tree $\rightarrow Q$
 - the root node $\rightarrow q_0$
 - Marks all accepting states for A
 - Makes goto function for each state
 - Makes failure function for each state as $f(q) = \pi(L(q))$

Aho-Corasick (AC) Algorithm (2)

- Algorithm of Failure Function

```
FAILUREFUNCTION(M, g)
Q ← empty queue
for $a \in \Sigma$
  if $g(q_0, a) = q \neq q_0$
    $f(q) ← \emptyset$ and enqueue($q, Q$)
  while $Q \neq \emptyset$
    $v ←$ dequeue($Q$)
    for $a \in \Sigma$
      if $g(v, a) = u \neq \emptyset$
        enqueue($u, Q$) and $v ← f(v)$
      while $g(v, a) = \emptyset$
        $v ← f(v)$
    $f(u) ← g(v, a)$
return $f$
```

- Runtime ?

- Total Runtime of AC Algorithm ?
Suffix Tree (1)

- **Suffix Tree**
 - Data structure to manage a string (text), \(T \)
 - Each path from the root represents each suffix of \(T \)
 - Also called “collapsed keyword tree”

- **Features**
 - Each edge is labeled with a string (a substring of \(T \))
 - All internal nodes have at least two outgoing edges
 - Similar to prefix trees, but edges that form a linear path are collapsed
 - Leaf nodes are labeled with the index of the pattern (starting position)

Suffix Tree (2)

- **Examples**
 - \(T = \) ATCATG
 - TCATG
 - CATG
 - ATG
 - TG
 - G

- **Runtime of Suffix Tree**
 - Construction?
 - Naïve approach

(a) Prefix tree (b) Suffix tree
Constructing Suffix Tree (1)

- Weiner’s Algorithm
 - Linear-time suffix tree construction algorithm

- Substring Function
 - Substring function $\theta(i)$ for T: a mapping to the position and length of the substring of $T[i+1..n]$ that matches the longest prefix of $T[i..n]$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>$\theta(i)$</td>
<td>4/2</td>
<td>5/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

Constructing Suffix Tree (2)

- Process
 - Read each character in T backwards
 - Attach the suffix $T[i..n]$ to the nodes labeled with the position of $\theta(i)$
 - Converting the edge with the length of $\theta(i)$, and adding new branches
 - Example, T="ATCATG"
Multiple Matching with Suffix Tree

- **Process**
 - Build a suffix tree for T
 - Thread each pattern P_i where $1 \leq i \leq k$ through the suffix tree
 - If threading is complete, output all labels of leaf nodes

- **Example of Threading**
 - $T = \text{"ATGCATA\text{CAT}\text{GG}"}$
 - $P_i = \text{"ATG"}$

- **Runtime**

Overview

- **Pattern Matching**
 - Exhaustive Search
 - DFA-Based Search Algorithm
 - KMP Algorithm

- **Multiple Pattern Matching**
 - AC Algorithm
 - Weiner’s Algorithm

- **Approximate Pattern Matching**
Exact Matching vs. Approximate Matching

- **Exact Matching**
 \[
 T = \text{agcctccgatcagttactcagatgtaactattcgatgcaccccctattacatctctacgatgtcataca} \\
 P = "cgatgt"
 \]
 \[
 T = \text{agcctccgatcagttactcagatgtaactattcgatgcaccccctattacatctctacgatgtcataca}
 \]

- **Approximate Matching (Inexact Matching)**
 \[
 T = \text{agcctccgatcagttactcagatgtaactattcgatgcaccccctattacatctctacgatgtcataca} \\
 \text{mutations}
 \]
 \[
 P = "cgatgt" \quad P = "cgatgt" \quad P = "cgatgt"
 \]

Formulation of Approximate Matching Problem

- **Goal**
 - Finding all approximate occurrences of a substring (length-\(m\)) in a string (length-\(n\))

- **Input**
 - A substring \(P = \rho_1, ..., \rho_m\), a string \(T = t_1, ..., t_n\), and the maximum number mismatches, \(k\)

- **Output**
 - All positions \(1 \leq i \leq (n-m+1)\) such that \(P\) and the substring of \(T\) starting at \(i\) have at most \(k\) mismatches
Naïve Approach

- Algorithm
 - Exhaustive search

 \begin{algorithm}
 \textbf{APPROXIMATEMATCHING}(T, P, k)
 \begin{align*}
 n & \leftarrow \text{length}(T) \\
 m & \leftarrow \text{length}(P) \\
 \text{for } i & \leftarrow 1 \text{ to } n - m + 1 \\
 \text{mismatch} & \leftarrow 0 \\
 \text{for } j & \leftarrow 1 \text{ to } m \\
 & \quad \text{if } T[i + j - 1] \neq P[j] \\
 & \quad \quad \text{then } \text{mismatch} \leftarrow \text{mismatch} + 1 \\
 & \quad \text{if } \text{mismatch} \leq k \\
 & \quad \quad \text{then print } i
 \end{align*}
 \end{algorithm}

- Runtime ?

Dynamic Programming

- Algorithm
 - Count mismatches, \(D(i, j) \), between \(P[i] \) and \(T[j] \)
 - Find all positions \(i \) such that the number of mismatches between \(P[1..m] \) and \(T[l..(l+m-1)] \) is less than or equal to \(k \)

 \[
 D(i, j) = \begin{cases}
 D(i-1, j-1) + 0 & \text{if } P[i] = T[j] \\
 D(i-1, j-1) + 1 & \text{otherwise}
 \end{cases}
 \]

- Example
 - \(T = \text{"AGCCTTGAT"}, \ P = \text{"GCAT"}, \ k=2 \)

- Runtime ?
Questions?

- Lecture Slides are found on the Course Website, web.ecs.baylor.edu/faculty/cho/3360