Lecture 5, Multiple Alignment

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

Pairwise Alignment vs. Multiple Alignment

- Pairwise Alignment
 - Alignment of two sequences
 - Sometimes two sequences are functionally similar or have a common ancestor although they have weak sequence similarity

- Multiple Alignment
 - Alignment of more than two sequences
 - Finds invisible similarity in pairwise alignment
Alignment of 3 Sequences

- Alignment of 2 Sequences
 - Described in a 2-row representation
 - Best alignment is found in a 2-D grid by dynamic programming

- Alignment of 3 Sequences
 - Described in a 3-row representation
 - \(x = \text{"ATGTG"}, y = \text{"ACGTA"}, z = \text{"ATCTG"} \)
 - Best alignment is found in a 3-D grid by dynamic programming

Alignment in 3-D Grid

- 3-D Edit Graph
 - 3-D grid structure (cube) with diagonals in each cell

- Example
 - Path in 3-D grid:
 \[(0,0,0) \rightarrow (1,1,1) \rightarrow (2,1,2) \rightarrow (2,2,3) \rightarrow (3,3,3) \rightarrow (4,4,4) \rightarrow (5,4,5) \rightarrow (5,5,5)\]
3-D Grid Unit

- 2-D Grid Unit Cell
 - Maximum 3 edges in each unit of 2-D grid

- 3-D Grid Unit Cell
 - Maximum 7 edges in each unit of 3-D grid

\[(i, j, k)\]
\[(i-1, j, k)\]
\[(i, j-1, k)\]
\[(i, j, k-1)\]
\[(i-1, j-1, k)\]
\[(i-1, j, k-1)\]
\[(i, j-1, k-1)\]
\[(i-1, j-1, k-1)\]

Solving by Dynamic Programming

- Formula
 \[
 S_{i,j,k} = \max \begin{cases}
 S_{i-1,j,k} + \delta(x_i, -, -) \\
 S_{i,j-1,k} + \delta(-, y_j, -) \\
 S_{i,j,k-1} + \delta(-, -, z_k) \\
 S_{i-1,j-1,k} + \delta(x_i, y_j, -) \\
 S_{i-1,j,k-1} + \delta(x_i, -, z_k) \\
 S_{i,j-1,k-1} + \delta(-, y_j, z_k) \\
 S_{i-1,j-1,k-1} + \delta(x_i, y_j, z_k)
 \end{cases}
 \]

- \(\delta(x, y, z)\) is the entry of 3-D scoring matrix

- Runtime ?
from 3-D Alignment to Multiple Alignment

- Alignment of \(k \) Sequences
 - Able to be solved by dynamic programming in \(k \)-D grid
 - Runtime?

- Conclusion
 - Dynamic programming for pairwise alignment can be extended to multiple alignment
 - However, computationally impractical
 - How can we solve this problem?

Heuristics of Multiple Alignment

- Background
 - Implementing pairwise alignment (2-D alignment) \(k \) times is better than implementing \(k \)-D multiple alignment once

- Heuristic Process
 1. Implementing all possible pairwise alignments
 2. Combining the most similar pair iteratively
Multiple Alignment Projection

- Multiple Alignment \iff Pairwise Alignments

\[x: AC - GCGG - C \]
\[y: AC - GC - G AG \]
\[z: GCCGC - G AG \]

- Projection

Pairwise Alignment to Multiple Alignment

- Pairwise Alignments \rightarrow Multiple Alignment

\[x: AC - GCGG - C \]
\[y: ACGC - G AG \]

\[x: AC - GCGG - C \]
\[z: GCCGC - G AG \]

\[y: AC - GC - G AG \]
\[z: GCCGC - G AG \]

\[y: AC - GC - G AG \]
\[z: GCCGC - G AG \]

- Can we construct a multiple alignment that induces pairwise alignments?

- Conclusion
 - Can’t infer optimal multiple alignment from all optimal pairwise alignments
Greedy Approach (1)

- **Process**
 1. Choose the most similar pair of sequences
 2. Merge them into a new sequence
 3. Choose the most similar sequence to the new sequence
 4. Repeat (2) and (3) until choosing all sequences

- **Example**
 - Step 1
 - \(s_1: \) GATTCA
 - \(s_2: \) GTCTGA
 - \(s_3: \) GATATT
 - \(s_4: \) GTCA
 - \(s_1 \rightarrow s_2 \rightarrow s_4 \rightarrow s_1 \)

Greedy Approach (2)

- **Example - continued**
 - Step 2
 - \(s_2, s_4 \rightarrow s_{2,4} \)
 - \(s_{2,4} \rightarrow s_{2,4} \)
 - Step 3
 - \(s_1: \) GATTCA
 - \(s_3: \) GATATT
 - \(s_{2,4}: \) GTCA

- **Features**
 - \(k \)-way alignment (alignment of \(k \) sequences) → Runtime?
 - Greedy algorithm → Not optimal multiple alignment
Progressive Alignment (1)

- **Features**
 - A variation of greedy algorithm (more intelligent strategy on each step)
 - Also called *hierarchical method*
 - Uses profiles to compare sequences
 - Gaps are permanent (“once a gap, always a gap”)
 - Works well for close sequences

- **Process**
 - **Stage 1**
 - Computes sequence identity of all possible pairs of sequences
 (identity = #match / sequence length)
 - Makes a similarity matrix

V1	V2	V3	V4	...
-	0.17	0.28	0.59	0.33

Progressive Alignment (2)

- **Process - continued**
 - **Stage 2**
 - Creates a guide tree using the similarity matrix
 - **Stage 3**
 - Applies a series of pairwise alignment following the guide tree
Application of Progressive Alignment

- ClustalW
 - Popular multiple alignment tool
 - Adopts the progressive multiple alignment

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOS_RAT</td>
<td>PEEMSVTS-LDLTGGLP-ESTPESEAFTLFLNDPEPK-PSLEPVKNIHMELKARPFDD</td>
</tr>
<tr>
<td>FOS_MOUSE</td>
<td>PEEMSVAAS-LDLTGGLP-ESTPESEAFTLFLNDPEPK-PSLEPVKNIHMELKARPFDD</td>
</tr>
<tr>
<td>FOS_CHICK</td>
<td>SEELAAATALDLG--------APSFAAEEAFALMLTEAPPAVPPKEPSG--SGLELKARPFDD</td>
</tr>
<tr>
<td>FOSB_MOUSE</td>
<td>PGPGPLAEVRLPG-----STSAKEDGFVMLLPPPPPP----------------------LPFQ</td>
</tr>
<tr>
<td>FOSB_HUMAN</td>
<td>PGPGPLAEVRLPG-----SAPAKEDGFVMLLPPPPPP----------------------LPFQ</td>
</tr>
</tbody>
</table>

Dots and stars show how well-conserved a column is

Scoring Schemes

- Number of Matches
 - Multiple longest common subsequence score
 - A column is a “match” if all the letters in the column are the same
 - AAA
 - AAG
 - AAT
 - ATC
 - Only good for very similar sequences

- Sum-of-Pair Scoring

- Entropy-Based Scoring
Sum-of-Pair Scoring

- **Sum-of-Pairs Scoring in Multiple Alignment**
 - Consider pairwise alignment of sequences, \(a_i \) and \(a_j \), imposed by a multiple alignment of \(k \) sequences
 - Denote the score of the pairwise alignment as \(S^*(a_i, a_j) \)
 - Sum up the pairwise scores for a multiple alignment:
 \[
 S(a_1, a_2, \cdots, a_k) = \sum_{i,j} S^*(a_i, a_j)
 \]

- **Example**
 - Aligning 4 sequences, \(a_1, a_2, a_3, \) and \(a_4 \), by
 \[
 S(a_1, a_2, a_3, a_4) = S^*(a_1, a_2) + S^*(a_1, a_3) + S^*(a_1, a_4) + S^*(a_2, a_3) + S^*(a_2, a_4) + S^*(a_3, a_4)
 \]

Entropy-Based Scoring (1)

- **Entropy in Information Theory**
 - A measure of the uncertainty associated with a random variable
 - \(H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i) \)

- **Entropy-Based Scoring in Multiple Alignment**
 - (1) Define frequencies for the occurrence of each letter on each column
 - (2) Compute entropy of each column
 - (3) Sum all entropies over all columns
Entropy-Based Scoring (2)

- **Example**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>AAG</td>
<td>AAT</td>
</tr>
<tr>
<td>ATC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 - **Frequency**
 - 1st column: $p(A) = 1$, $p(T) = p(G) = p(C) = 0$
 - 2nd column: $p(A) = 0.75$, $p(T) = 0.25$, $p(G) = p(C) = 0$
 - 3rd column: $p(A) = 0.25$, $p(T) = 0.25$, $p(C) = 0.25$, $p(G) = 0.25$

 - **Entropy**

 $$
 H_{AA} = 0 \\
 H_{AT} = \frac{3}{4} \log_4 \frac{3}{4} = -0.602 \\
 H_{AG} = \log_4 1 = 0.000 \\
 H_{AC} = \log_4 1 = 0.000 \\
 H_{TG} = \frac{1}{4} \log_4 \frac{1}{4} = -0.500 \\
 H_{TC} = \frac{1}{4} \log_4 \frac{1}{4} = -0.500 \\
 H_{GC} = \log_4 1 = 0.000 \\
 H_{GC} = \log_4 1 = 0.000
 $$

 - Entropy-based score in multiple alignment: $0 + 0.244 + 0.602$

Advanced Multiple Alignment

- **Background**

 - Progressive sequence alignment has loss of information
 -> not optimal even though very efficient
 - Multi-domain proteins evolve not only through point mutations
 but also through domain duplications and domain re-combinations
 -> Rearrangement might be meaningful for aligning multi-domain
 protein sequences

- **Examples**

 - Partial Order Multiple Sequence Alignment (PO-MSA)
 - A-Bruijn Alignment (ABA)
Alignment as a Graph

Conventional pairwise alignment

A path of a sequence

Combining two paths

Combined directed acyclic graph (partial order)

PO-MSA Algorithm

- **Partial Order Multiple Sequence Alignment (PO-MSA)**
 - Considers a set of sequences S as a directed acyclic graph G such that each sequence in S is a path in G
 - (Each sequence is mapped into the graph.)
 - Focuses on ordering rather than positions

- **Algorithm**
 1. Construct a guide tree
 2. Apply progressive alignment following the guide tree
 3. Align two directed acyclic graphs (Partial Order Alignment) using dynamic programming algorithm at each step
Partial Order Alignment (1)

- **Schematic View**
 - (a) Conventional pairwise alignment
 - (b) PO-MSA

Partial Order Alignment (2)

- **Advantages**
 - **Scalability**
 - Linear increase of time complexity as the increment of predecessors
 - **Accuracy**
 - Homologous recombination for multi-domain protein sequences
 (The graph represents domain structure.)
Questions?

- Lecture Slides are found on the Course Website,
 web.ecs.baylor.edu/faculty/cho/3360