Lecture 4, Sequence Alignment

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

Overview

- Backgrounds
- Manhattan Tourist Problem
- Longest Common Subsequence Problem
- Edit Distance
- Global Sequence Alignment
- Local Sequence Alignment
- Alignment with Gap Penalty
Sequence Similarity

- Homologs
 - similar sequence + common ancestor (divergent evolution)
 - Orthlogs: homologs in different species by species divergence
 - Paralogs: homologs in the same species by gene duplication

- Analogs
 - similar sequence + no common ancestor (convergent evolution)

- How to measure sequence similarity
 1. Counting identical letters on each position
 2. Inserting gaps to maximize the number of identical letters

 ![Example](ACGTTAT
 TCGTACT
 ACGTTA-T
 TCGT-ACT)

Comparison of Sequence Similarity Measures

- Measure (1)
 - Compares the letters on the same position between two sequences
 - Not applicable to measurement of evolutionary distance

- Measure (2)
 - Compares the letters in the same order (even on different positions) between two sequences
 - More applicable to measurement of evolutionary distance
 - Why?
 - Example?
Sequence Alignment

- **Definition**
 - Arranging two or more DNA or protein sequences by inserting gaps to maximize their sequence similarity score.
 - E.g., the number of identical positions.
 - E.g., the sum of scores by any scoring scheme.

- **Applications**
 - Given gene sequences, infer their evolutionary history (phylogenetics).
 - Given gene sequences of known functions, infer the functions of newly sequenced genes.
 - Given genes of known functions in one organism, infer the functions of genes in another organism.

Overview

- **Backgrounds**
 - Manhattan Tourist Problem
 - Longest Common Subsequence Problem
 - Edit Distance
 - Global Sequence Alignment
 - Local Sequence Alignment
 - Alignment with Gap Penalty
Problem Definition
- A tourist seeks a path to travel with the most attractions in Manhattan road map (grid structure)
- Restrictions
 - A path from a source to a sink
 - A path only eastward and southward

Formulation of MTP
- Goal
 - Finding the strongest path from a source to a sink in a weighted grid
 - The weight of an edge is defined as the number of attractions
 - The path strength is measured by summing the weights on the path
- Input
 - A weighted grid G with two distinct vertices, source and sink
- Output
 - A strongest path in G from the source to the sink
Example of MTP

- Example

```
Example
```

```
Algorithm
(1) Enumerate all possible paths from the source to the sink
(2) Compute the path strength for all possible paths
(3) Find the strongest path

- Problems ?
```

Solving by Exhaustive Search
Solving by Greedy Algorithm

- Algorithm
 1. Start from the source
 2. Select the edge having the highest weight
 3. Repeat (2) until it reaches the sink

- Problems?
- Runtime?

Solving by Recursive Algorithm

- Algorithm

  ```
  MTP(m, n)
  if m = 0 and n = 0
    return 0
  else if m = 0 and n ≠ 0
    return MTP(m, n - 1) + w((m, n - 1), (m, n))
  else if m ≠ 0 and n = 0
    return MTP(m - 1, n) + w((m - 1, n), (m, n))
  else
    x ← MTP(m - 1, n) + w((m - 1, n), (m, n))
    y ← MTP(m, n - 1) + w((m, n - 1), (m, n))
    return max(x, y)
  ```

- Problems?
- Runtime?
Solving by Dynamic Programming

- **Algorithm**

 \[
 \text{MTP}(m,n) \\
 S_{0,0} = 0 \\
 \text{for } i = 1 \text{ to } m \\
 S_{i,0} = S_{i-1,0} + w((i-1,0),(i,0)) \\
 \text{for } j = 1 \text{ to } n \\
 S_{0,j} = S_{0,j-1} + w((0,j-1),(0,j)) \\
 \text{for } i = 1 \text{ to } m \\
 \text{for } j = 1 \text{ to } n \\
 S_{i,j} = \max \left\{ S_{i-1,j} + w((i-1,j),(i,j)), S_{i,j-1} + w((i,j-1),(i,j)) \right\} \\
 \text{return } S_{m,n}
 \]

- **Recursive Formula**

 \[
 S_{i,j} = \max \left\{ S_{i-1,j} + w((i-1,j),(i,j)), S_{i,j-1} + w((i,j-1),(i,j)) \right\}
 \]

Example of Dynamic Programming

- **Example**

 ![Graph Example](image)

- **Runtime ?**
Traversing Strategies

- Three Different Strategies
 - Column by column
 - Row by row
 - Along diagonals

Overview

- Backgrounds
- Manhattan Tourist Problem
- Longest Common Subsequence Problem
- Edit Distance
- Global Sequence Alignment
- Local Sequence Alignment
- Alignment with Gap Penalty
Longest Common Subsequences (1)

- Subsequence of x
 - An ordered sequence of letters from x
 - Not necessarily consecutive
 - e.g., x = "ATTGCTA", "AGCA"?, "TCG"?, "ATCT"?, "TGAT"?

- Common Subsequence of x and y
 - e.g., x = "ATCTGAT" and y = "TGCATA", "TCTA"?, "TGAT"?, "TATA"?

- Longest Common Subsequence (LCS) of x and y?

Longest Common Subsequences (2)

- Definition of LCS
 - Given two sequences, $v = \langle v_1 \ v_2 \ ... \ v_m \rangle$ and $w = \langle w_1 \ w_2 \ ... \ w_n \rangle$, LCS of v and w is a sequence of positions in
 - v: $1 \leq i_1 < i_2 < ... < i_t \leq m$
 - w: $1 \leq j_1 < j_2 < ... < j_t \leq n$
 - such that i_t-th letter of v equals to j_t-letter of w, and t is maximal
LCS in 2-Row Representation (1)

Example

- x="ATCTGATG" (m=8), y="TGCATAC" (n=7)

<table>
<thead>
<tr>
<th>x</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>-</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>T</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>-</td>
<td>A</td>
<td>--</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

- Position in x: 2 < 3 < 4 < 6
- Position in y: 1 < 3 < 5 < 6
- Common subsequence: "TCTA"

LCS in 2-Row Representation (2)

Example - Continued

- x="ATCTGATG" (m=8), y="TGCATAC" (n=7)

<table>
<thead>
<tr>
<th>x</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>T</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>-</td>
<td>A</td>
<td>--</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>T</th>
<th>G</th>
<th>-</th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

- Position in x: 2 < 3 < 4 < 6
- Position in y: 1 < 3 < 5 < 6
- Common subsequence: "TCTA"
LCS in 2-D Grid Representation

- **Edit Graph**
 - 2-D grid structure having diagonals on the position of the same letter

- **Example**
 - x="ATGTTAT" (m=7)
 - y="ATCGTAC" (n=7)
 - Strongest path in edit graph
 - (0,0) → (1,1) → (2,2) → (2,3) → (3,4) → (4,5) → (5,5) → (6,6) → (7,6) → (7,7)

Formulation of LCS Problem

- **Goal**
 - Finding the longest common subsequence (LCS) of two sequences (length-\(m\), length-\(n\))
 - Finding the strongest path from a source to a sink in a weighted edit graph
 - The path strength is measured by summing the weights on the path

- **Input**
 - A weighted edit graph \(G\) with source \((0,0)\) and sink \((m,n)\)

- **Output**
 - A strongest path in \(G\) from the source to the sink
Solving by Exhaustive Search

- Algorithm
 1. Enumerate all possible paths from the source to the sink
 2. Compute the path strength for all possible paths
 3. Find the strongest path

- Problems?

Solving by Greedy Algorithm

- Algorithm
 1. Start from the source
 2. Select the edge having the highest weight
 (i.e., if there is a diagonal edge, select it.)
 Otherwise, select one of the other edges.)
 (3) Repeat (2) until it reaches the sink

- Problems?

- Runtime?
Solving by Dynamic Programming

- **Recursive Formula**
 \[S_{i,j} = \max \begin{cases} S_{i-1,j} + 0 \\ S_{i,j-1} + 0 \\ S_{i-1,j-1} + 1 \text{ if } x_i = y_j \end{cases} \]

- **Algorithm**
  ```plaintext
  LCS(x, y)
  for i ← 0 to m
    S_{i,0} ← 0
  for j ← 1 to n
    S_{0,j} ← 0
  for i ← 1 to m
    for j ← 1 to n
      if x_i = y_j
        S_{i,j} ← max(S_{i-1,j}, S_{i,j-1}, S_{i-1,j-1} + 1)
      else
        S_{i,j} ← max(S_{i-1,j}, S_{i,j-1})
  return S_{m,n}
  ```

Example of LCS

- **Example**
 - x="ATGTTAT" (m=7), y="ATCGTAC" (n=7)
Finding LCS

- Storing Directions
 \[
 D_{i,j} = \begin{cases}
 \| & \text{if } S_{i,j} = S_{i-1,j} \\
 \rightarrow & \text{if } S_{i,j} = S_{i,j-1} \\
 \\ \ \\
 \downarrow & \text{if } S_{i,j} = S_{i-1,j-1} + 1
 \end{cases}
 \]

- Backtracking

  ```
  BACKTRACKING(D, x, i, j)
  if i > 0 and j > 0
      if D_{i,j} = "\|
          BACKTRACKING(D, x, i-1, j)
      else if D_{i,j} = "\rightarrow"
          BACKTRACKING(D, x, i, j-1)
      else
          BACKTRACKING(D, x, i-1, j-1)
  print x
  ```

Overview

- Backgrounds
- Manhattan Tourist Problem
- Longest Common Subsequence Problem
- **Edit Distance**
- Global Sequence Alignment
- Local Sequence Alignment
- Alignment with Gap Penalty
Edit Distance (1)

- Definition
 - Edit distance between two sequences x and y: the minimum number of editing operations (insertion, deletion, substitution) to transform x into y

- Example
 - $x=\text{TGCATAT}$ (m=7), $y=\text{ATCCGAT}$ (n=7)
 - $\text{TGCATAT} \rightarrow \text{ATGCATAT}$ (insertion of "A")
 - $\text{ATGCATAT} \rightarrow \text{ATGCAAT}$ (deletion of "T")
 - $\text{ATGCAAT} \rightarrow \text{ATCCAAT}$ (substitution of "G" with "C")
 - $\text{ATCCAAT} \rightarrow \text{ATCCGAT}$ (substitution of "A" with "G")
 - $\text{ATCCGAT} \rightarrow \text{ATCCGAT}$ (deletion of "T")

 - Edit distance = 5?

Edit Distance (2)

- Example
 - $x=\text{TGCATAT}$ (m=7), $y=\text{ATCCGAT}$ (n=7)
 - Can it be done in 3 steps?
 - $\text{TGCATAT} \rightarrow \text{ATGCAAT}$ (deletion of "T")
 - $\text{ATGCAAT} \rightarrow \text{ATCCAAT}$ (substitution of "G" with "C")
 - $\text{ATCCAAT} \rightarrow \text{ATCCGAT}$ (substitute of "A" with "G")

 - Edit distance = 4?

- Features
 - Allows comparison of two sequences of different lengths
2-Row Representation

- Example in 2-row representation
 - x="ATCTGATG" (m=8), y="TGCATAC" (n=7)

```
  x  AT  -C  -TG  ATG -
  y  -TGCAT- -A- -C
```

4 matches
4 deletions
3 insertions

```
  x  AT  -C  -TG  ATG
  y  -TGCAT- -A- -C
```

4 matches
3 deletions
2 insertions
1 substitution

Edit distance = #insertions + #deletions + #mismatches

Edit Distance in 2D Grid Representation

- Edit Graph
Solving by Exhaustive Search or Greedy Algorithm

- Exhaustive Search Algorithm
- Greedy Algorithm

Solving by Dynamic Programming

- Recursive Formula
- Dynamic Programming Algorithm
Overview

- Backgrounds
- Manhattan Tourist Problem
- Longest Common Subsequence Problem
- Edit Distance
- Global Sequence Alignment
- Local Sequence Alignment
- Alignment with Gap Penalty

from LCS to Sequence Alignment

- LCS problem
 - Allows only insertions and deletions - no substitutions
 - Scores 1 for a match and 0 for an insertion or deletion

- Sequence Alignment Problem
 - Allows gaps (insertions and deletions) and mismatches (substitutions)
 - Uses any scoring schemes
Formulation of Global Alignment Problem

➤ Goal
 ▪ Finding the best alignment of two sequences under a given scoring schema

➤ Input
 ▪ Two sequences x (length-m) and y (length-n), and a scoring schema

➤ Output
 ▪ An alignment of x and y with the maximal score

Basic Scoring Scheme

➤ Simplest Scoring Scheme
 ▪ Match premium: +α
 ▪ Mismatch penalty: -μ
 ▪ Insertion and deletion (gap) penalty: -σ

\[
\text{Score} = α \#\text{matches} - μ \#\text{mismatches} - σ (\#\text{insertions} + \#\text{deletions})
\]

➤ Recursive Formula

\[
S_{i,j} = \max \begin{cases}
S_{i-1,j} - σ \\
S_{i,j-1} - σ \\
S_{i-1,j-1} - μ & \text{if } x_i \neq y_j \\
S_{i-1,j-1} + α & \text{if } x_i = y_j
\end{cases}
\]

➤ Runtime?
Example of Sequence Alignment

- Example
 - x="ATGTTAT" (m=7), y="ATCGTAC" (n=7)

![Sequence Alignment Diagram]

All horizontal and vertical edges: \(-\sigma \)

Solving by Dynamic Programming

- Algorithm

```plaintext
GLOBAL ALIGNMENT(x, y)
S_{0,0} \leftarrow 0
for i \leftarrow 1 \text{ to } m
  S_{i,0} \leftarrow S_{i-1,0} - \sigma
for j \leftarrow 1 \text{ to } n
  S_{0,j} \leftarrow S_{0,j-1} - \sigma
for i \leftarrow 1 \text{ to } m
  for j \leftarrow 1 \text{ to } n
    if \( x_i = y_j \)
      S_{i,j} \leftarrow \max(S_{i-1,j} - \sigma, S_{i,j-1} - \sigma, S_{i-1,j-1} + \alpha)
    else
      S_{i,j} \leftarrow \max(S_{i-1,j} - \sigma, S_{i,j-1} - \sigma, S_{i-1,j-1} - \mu)
return S_{m,n}
```
Advanced Scoring Scheme (1)

- Percent Identity
 - Percentage of identical matches

- Percent Similarity
 - Percentage of nucleotide pairs with the same type
 - Percentage of similar amino acid pairs in biochemical structure

- Advanced Scoring Scheme
 - Varying scores for matches
 - Varying, strong penalties for mismatches
 - Relative likelihood of evolutionary relationship
 - Probability of mutations
 - Define scoring matrix for DNA or protein sequences

Advanced Scoring Scheme (2)

- Scoring Matrix δ
 - Also called substitution matrix
 - 4×4 array representation for DNA sequences
 - 20×20 array representation for protein sequences
 - Entry of $\delta(i,j)$ has the score between i and j,
 i.e., the rate at which i is substituted with j over time

- Recursive Formula
 $$S_{i,j} = \max \left\{ S_{i-1,j} + \delta(x_i,-) \right\}$$

- Runtime?
Scoring Matrix Example (1)

- PAM (Point Accepted Mutations)
 - For protein sequence alignment
 - Amino acid substitution frequency in mutations
 - Logarithmic matrix of mutation probabilities
 - PAM120: Results from 120 mutations per 100 residues
 - PAM120 vs. PAM240

- BLOSUM (Block Substitution Matrix)
 - For protein sequence alignment
 - Applied for local sequence alignments
 - Substitution frequencies between clustered groups
 - BLOSUM-62: Results with a threshold (cut-off) of 62% identity
 - BLOSUM-62 vs. BLOSUM-50

Scoring Matrix Example (2)

- Substitution Matrix Examples
 - BLOSUM-62
 - PAM120
Overview

- Backgrounds
- Manhattan Tourist Problem
- Longest Common Subsequence Problem
- Edit Distance
- Global Sequence Alignment
- **Local Sequence Alignment**
- Alignment with Gap Penalty

Local Sequence Alignment (1)

- Example
 - \(x = \text{"TCAGTGTCGAAGTTA"} \)
 - \(y = \text{"TAGGCTAGCAGTG"} \)

- Global Alignment

 | T | C | A | G | – | – | T | G | C | G | A | A | G | T | – | T | A | |
 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | | | | | | | | | | | | | | | | | |
 | T | A | G | G | C | T | A | G | – | C | – | A | – | G | T | G | T | G |

- Local Alignment

<table>
<thead>
<tr>
<th>T</th>
<th>C</th>
<th>A</th>
<th>G</th>
<th>T</th>
<th>G</th>
<th>T</th>
<th>CG</th>
<th>A</th>
<th>A</th>
<th>G</th>
<th>T</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>T</td>
<td>A</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>G</td>
</tr>
</tbody>
</table>

BAYLOR
Local Sequence Alignment (2)

- Example - Continued

T A G G C T A G C A G T G T G

- Scoring in this range for local alignment

Global vs. Local Alignment

- Global Alignment Problem
 - Finds the path having the largest weight between vertices (0,0) and (m,n) in the edit graph

- Local Alignment Problem
 - Finds the path having the largest weight between two arbitrary vertices, (i,j) and (i',j'), in the edit graph

- Score Comparison
 - The score of local alignment must be greater than (or equal to) the score of global alignment
Formulation of Local Alignment Problem

- **Goal**
 - Finding the best local alignment between two sequences

- **Input**
 - Two sequences \(x \) and \(y \), and a scoring matrix \(\delta \)

- **Output**
 - An alignment of substrings of \(x \) and \(y \) with the maximal score among all possible substrings of them

Implementation of Local Alignment

- **Strategy**

Diagram:
Compute "mini" global alignment for local alignment
Solving by Exhaustive Search (1)

- Process
 1. Enumeration of all possible pairs of substrings
 2. Global alignment for each pair of substrings

- Process (re-writing)
 1. Enumeration of all possible pairs of start position \((i,j)\) and end position \((i',j')\)
 2. Global alignment from each position \((i,j)\) to each position \((i',j')\)

- Runtime
 - Suppose two sequences have the same length \(n\)
 - Global alignment :
 - Total runtime :

Solving by Exhaustive Search (2)

- Process (improvement)
 1. Enumeration of all possible starting positions \((i,j)\)
 2. Global alignment from each \((i,j)\)

- Runtime
 - Suppose two sequences have the same length \(n\)
 - Global alignment :
 - Total runtime :

- Solution
 - Free ride!
Solving by Dynamic Programming

- Free Ride
 - Assigns 0 weights from (0,0) to any other nodes \((i,j)\)

- Recursive Formula

\[
S_{i,j} = \begin{cases}
0 & \\
S_{i-1,j} + \delta(x_i, -) \\
S_{i,j-1} + \delta(-, y_j) \\
S_{i-1,j-1} + \delta(x_i, y_j)
\end{cases}
\]

- Runtime?

Overview

- Backgrounds
- Manhattan Tourist Problem
- Longest Common Subsequence Problem
- Edit Distance
- Global Sequence Alignment
- Local Sequence Alignment
- Alignment with Gap Penalty
Scoring Insertions/Deletions

- Naïve Approach
 - $-\sigma$ for 1 insertion/deletion,
 - -2σ for 2 consecutive insertions/deletions
 - -3σ for 3 consecutive insertions/deletions, etc.
 - too severe penalty for a series of 100 consecutive insertions/deletions

- Example
 - $x=\text{"ATAGC"}, y=\text{"ATATTGC"}$
 - $x=\text{"ATAGGC"}, y=\text{"ATGTGC"}$

Scoring Gaps of Insertions/Deletions

- Gap
 - Contiguous sequence of spaces in one of the rows
 - Contiguous sequence of insertions or deletions in 2-row representation

- Linear Gap Penalty
 - Score for a gap of length $x : -\sigma x$ (Naïve approach)

- Constant Gap Penalty
 - Score for a gap of length $x : -\rho$

- Affine Gap Penalty
 - Score for a gap of length $x : -(\rho + \sigma x)$
 - $-\rho :$ gap opening (existence) penalty / $-\sigma :$ gap extension penalty ($\rho \gg \sigma$)
Applying Constant/Affine Gap Penalty

- Edit Graph Update
 - Add "long" horizontal or vertical edges to the edit graph
 - Runtime ?

Improved Solution for Constant/Affine Gap Penalty

- 3-Layer Grid Structure
 - Middle layer (Main layer) for diagonal edges
 - Extends matches and mismatches
 - Upper layer for horizontal edges
 - Creates/extends gaps in a sequence y
 - Lower layer for vertical edges
 - Creates/extends gaps in a sequence x
 - Gap opening penalty ($-\rho$) for jumping from middle layer to upper/lower layer
 - Gap extension penalty ($-\sigma$) for extending on upper/lower layer
Example of 3-Layer Grid

- upper layer (gaps in x)
- main layer (matches/mismatches)
- lower layer (gaps in y)

Solving by Dynamic Programming

- Recursive Formula

$$S_{i,j} = \max \begin{cases} S_{i-1,j-1} + \delta(x_i,y_j) & \rightarrow \text{match / mismatch} \\ S_{i,j}^{\text{lower}} & \\ S_{i,j}^{\text{upper}} \end{cases}$$

$$S_{i,j}^{\text{lower}} = \max \begin{cases} S_{i-1,j}^{\text{lower}} - \sigma & \rightarrow \text{continuing gap in } x \\ S_{i,j}^{\text{lower}} - (\rho + \sigma) & \rightarrow \text{starting gap in } x \end{cases}$$

$$S_{i,j}^{\text{upper}} = \max \begin{cases} S_{i-1,j}^{\text{upper}} - \sigma & \rightarrow \text{continuing gap in } y \\ S_{i,j}^{\text{upper}} - (\rho + \sigma) & \rightarrow \text{starting gap in } y \end{cases}$$

- Runtime?
Questions?

- Lecture Slides are found on the Course Website,
 web.ecs.baylor.edu/faculty/cho/3360