Lecture 3, Review of Algorithms

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

What is Algorithm?

- **Definition**
 - A process that performs a sequence of operations (wikipedia)
 - A series of well-defined instructions to perform a specific task

```plaintext
BottlesOfBeer (x)
for i ← x down to 1
  sing " i bottles of beer on the wall, i bottles of beer,"
  sing " take one down, pass it around, (i-1) bottles of beer on the wall."
  sing " No bottles of beer on the wall, no bottles of beer,"
  sing " Go to the store, buy some more, x bottles of beer on the wall."
```
How to Express Algorithm?

- **Natural Language** (English)
- **Programming Language** (Code)
- **Flow Chart, Diagram**
- **Pseudocode**
 - compact and informal high-level description of algorithms
 - ignoring details in codes, but unambiguous for the task

```
FIBONACCI(n)
F_1 ← 1
F_2 ← 1
for i ← 3 to n
    F_i ← F_{i-1} + F_{i-2}
return F_n
```

How to Evaluate Algorithm?

- **Correctness**
 - It should work correct on all possible inputs

- **Efficiency**
 - It should run in a reasonable time
 - *Big-O* notation is used
Overview

- Exhaustive Search
- Divide-and-Conquer Algorithm
- Dynamic Programming
- Greedy Algorithm
- Randomized Algorithm
- Graph Algorithm

Exhaustive Search

- Process
 - Examine all possible cases to find a solution
 - Also, called brute force search
- Features
 - Simple
 - Sometimes, very inefficient because of combinatorial explosion
- Example
 - Selection sort
- Alternatives
 - Random Sampling
 - Branch and bound algorithm
 - Anti-monotonic property
Selection Sort

- **Algorithm**
 - Iteratively search the smallest one

  ```
  SelectionSort(a, n)
  for i ← 1 to n - 1
    a_i ← smallest one between a_i and a_n
    swap a_i and a_j
  return a
  ```

- **Runtime ?

Anti-monotonic Property

- **Definition**
 - If a case satisfies a condition, then more general cases always satisfy it
 - If a case violates a condition, then more specific cases always violate it

- **Example**
 - Find maximal sized sets of genes that occur together at least twice

<table>
<thead>
<tr>
<th>Function ID</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, C</td>
</tr>
<tr>
<td>20</td>
<td>C, D, F</td>
</tr>
<tr>
<td>30</td>
<td>A, C, E</td>
</tr>
<tr>
<td>40</td>
<td>A, B, C, E</td>
</tr>
</tbody>
</table>
Divide-and-Conquer Algorithm

- **Process**
 1. Recursively splitting the problem into smaller sub-problems
 2. Solve the smallest sub-problem independently
 3. Recursively merging the solutions of sub-problems until having a solution of the original problem

- **Purpose**
 - Improve efficiency

- **Examples**
 - Merge sort
 - Quick sort

Merge Sort

- **Algorithm**
 1. Recursively divide the array
 2. Recursively combine two arrays in a sorted order

```plaintext
MergeSort(A[1..n])
if (n > 1)
    m = [n/2]
    MergeSort(A[1..m])
    MergeSort(A[m+1..n])
    Merge(A[1..n], m)
```

```plaintext
Merge(A[1..n], m)
i = 1; j = m + 1
for k = 1 to n
    if i > m
        B[k] ← A[j]; j ← j + 1
    else if j > n
        B[k] ← A[i]; i ← i + 1
    else if A[i] > A[j]
        B[k] ← A[j]; j ← j + 1
    else if A[i] < A[j]
        B[k] ← A[i]; i ← i + 1
    for k = 1 to n
        A[k] ← B[k]
```

- **Runtime ?**
Quick Sort

- **Algorithm**
 1. Recursively divide the array based on the pivot
 2. Recursively combine two arrays

  ```plaintext
  QuickSort(A[1..n])
  if (n > 1)
    k ← Partition(A, p)
    QuickSort(A[1..k - 1])
    QuickSort(A[k + 1..n])
  ```

- **Runtime**

Dynamic Programming

- **Process**
 1. Formulate the problem recursively by breaking it down into sub-problems
 2. Build solutions in a linear fashion

 (Repeatedly use the result of a sub-problem to solve the next sub-problem)

- **Features**
 - Optimization (finding an optimal solution)
 - Memoization (storing results of intermediate sub-problems)

- **Examples**
 - Sequence alignment
 - Binary search tree
‘Rocks’ Game (1)

- **Rule**
 - 2 piles of rocks
 - A player may take either 1 rock (from either pile) or 2 rocks (1 from each)
 - The player who takes the last rock wins

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
<td>L</td>
<td>W</td>
</tr>
</tbody>
</table>

‘Rocks’ Game (2)

- **Recursive Formula**

\[
\begin{align*}
R_{i,0} & = W \\
R_{0,1} & = W \\
R_{0,1} & = W \\
R_{i,j} & = L & \text{if } & R_{i-1,j} = W \ (\text{where } i \geq 1) \text{ and } R_{i,j-1} = W \ (\text{where } j \geq 1) \\
R_{i,j} & = L & \text{otherwise} & \text{and } R_{i-1,j-1} = W \\
R_{i,j} & = W & \text{otherwise} & \text{and } R_{i-1,j-1} = W
\end{align*}
\]

To solve a problem by dynamic programming, find the recursive formula at first!
Binary Search Tree

- **Search Time**
 - Data search time in array?
 - Data search time in binary search tree?

- **Formula**
 \[
 S(T) = \sum_{i=1}^{n} (\text{depth}(T, i) + 1) \cdot f[i]
 \]
 \[
 \text{depth}(T, i) = \begin{cases}
 \text{depth}(ext{left}(T), i) + 1 & \text{if } i < r \\
 0 & \text{if } i = r \\
 \text{depth}(ext{right}(T), i) + 1 & \text{if } i > r
 \end{cases}
 \]

Greedy Algorithm

- **Process**
 1. Determine the optimal structure of a problem
 2. Find the local optimal solution at each step

- **Features**
 - Local optimization

- **Examples**
 - Huffman codes
 - Minimum spanning tree
Money Counting

- **Problem**
 - Count a certain amount of money using the fewest bills and coins

- **Local Optimum Solution**
 - Take the largest bill or coin at each step

- **Examples**
 - $14.27

 To solve a problem by a greedy algorithm, find the *local optimum solution* at first!

Scheduling

- **Problem**
 - Assign m jobs into n processors to finish all the jobs as early as possible
 - Suppose $m > n$

- **Local Optimum Solution**?

- **Examples**
 - 9 jobs on 3 processors
 (runtime of 9 jobs are 3, 5, 6, 10, 11, 14, 15, 18, and 20 min.)
Binary Codes

- Encoding method
- Use binary representation (0 and 1)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed-length binary codes</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>variable-length binary codes</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>100</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

- Advantages
 - Fixed-length codes: straightforward
 - Variable-length codes: efficient (encode with lower bits)
 - e.g., ace?

 How to make correct variable-length codes? Make prefix codes!

Prefix Codes

- No codeword is a prefix of any other codeword
- How to make? Build a binary tree!

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed-length binary codes</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>variable-length binary codes</td>
<td>0</td>
<td>100</td>
<td>101</td>
<td>111</td>
<td>1100</td>
<td>1101</td>
</tr>
</tbody>
</table>

Build a binary tree!
Huffman Coding (3)

- **Problem**
 - Find optimal prefix codes for the most efficient compression
 - Suppose each letter has different frequency

- **Local Optimum Solution?**

- **Examples**
 - a:45 b:13 c:12 d:16 e:9 f:5

Randomized Algorithm

- **Process**
 - Examine random samples to find a solution

- **Features**
 - Simple
 - Probabilistic
 - Sometimes, non-deterministic

 - **Deterministic algorithm:**
 always produce the same solution given a particular input
 - **Non-deterministic algorithm:**
 allows multiple solutions based on an input or random choices
Bolts and Nuts

- **Problem**
 - Among n nuts, find the nut that matches a given bolt

- **Expected Number of Comparison?**
 - $T(n)$: number of comparison to find a match for a single bolt out of n nuts
 - $E[T(n)] = \sum_{k=1}^{n-1} k \cdot Pr[T(n) = k]$
 - $Pr[T(n) = k] = \begin{cases}
 1/n & \text{if } k < n - 1 \\
 2/n & \text{if } k = n - 1
 \end{cases}$
 - $E[T(n)] = \frac{n + 1}{2} - \frac{1}{n}$

Graph Algorithms (1)

- **Graph G**
 - An ordered pair $G(V,E)$ with a set of vertices V and a set of edges E

- **Degree of a Vertex v_i**
 - The number of links from v_i to other vertices
 - Incoming degree and outgoing degree for directed networks

- **Adjacent Neighbors $N(v_i)$ of a Vertex v_i**
 - A set of vertices linked from v_i

- **Degree Distribution $P(k)$**
 - Probability that a vertex has exactly k links
 - The number of vertices with degree of k over the total number of vertices
Graph Algorithms (2)

- **Walk**
 - A sequence of vertices such that each vertex is linked to its succeeding one

- **Path**
 - A walk such that each vertex in the walk is distinct

- **Path Length |p|**
 - The number of edges in the path p

- **Shortest Path between \(v_i \) and \(v_j \), \(p_s(v_i,v_j) \)**
 - A path with the smallest length among all paths from \(v_i \) to \(v_j \)

- **Characteristic Path Length of a Graph \(G \)**
 - Average length of the shortest paths between all possible pairs of vertices

- **Diameter of a Graph \(G \)**
 - Largest length of the shortest paths between all possible pairs of vertices

Graph Algorithms (3)

- **Density of a Graph \(G(V,E) \)**
 - The number of actual edges over the number of all possible edges
 - \(D(G) = 2|E| / |V|(|V|-1) \)

- **Clique**
 - A fully connected graph (complete graph) such that \(D(G) = 1 \)

- **Graph Representations**
 - Adjacency list
 - Adjacency matrix

- **Graph Search Algorithms**
 - Breadth-First Search
 - Depth-First Search
Breadth-First Search

- **Features**
 - Exhaustive search of a specific data
 - FIFO queue
 - Computation of shortest path length between two data objects

- **Algorithm**

- **Time Complexity** ?

BFS(G, s)

\[visited[s] \leftarrow yes \]

ENQUEUE(Q, s)

while \(Q \neq \emptyset \)

\[u \leftarrow DEQUEUE(Q) \]

for each \(v \in N(u) \)

if \(visited[v] = no \)

\[visited[v] \leftarrow yes \]

ENQUEUE(Q, v)

Depth-First Search

- **Features**
 - Search of a specific data in a tree structure
 - Backtracking

- **Algorithm**

DFS(u, visited)

\[visited[u] \leftarrow yes \]

for each \(v \in N(u) \)

if \(visited[v] = no \)

\[DFS(v, visited) \]

- **Time Complexity** ?
Questions?

- Lecture Slides are found on the Course Website, web.ecs.baylor.edu/faculty/cho/3360