Chapter 4, Number Theory (2)

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

4.3. Primes and Greatest Common Divisors

- **Primes**
 - An integer \(p > 1 \) is prime iff the only positive factors of \(p \) are 1 and \(p \).
 - For example, 2, 3, 5, 7, 11, 13, 17, ...
 - A non-prime integers \(c > 1 \) is called composite.

- **Theorem 1 (Prime Factorization)**
 - Every positive integer greater than 1 has a unique representation as a prime or as the product of a non-decreasing series of two or more primes.
 - For example,
 - \(4 = 2^2 \)
 - \(100 = 2^2 \cdot 5^2 \)
 - \(999 = 3^3 \cdot 37 \)
 - \(2001 = 3 \cdot 23 \cdot 29 \)
Trial Division

- **Theorem 2**
 - If \(n \) is a composite integer, \(n \) has a prime divisor less than or equal to \(\sqrt{n} \).
 - Example: Show that 101 is prime.
 - Primes not exceeding \(\sqrt{101} \) are 2, 3, 5, and 7.
 - 101 is not divisible by any of 2, 3, 5, or 7.
 - Therefore, 101 is a prime.

- **Theorem 3**
 - There are infinitely many primes.
 - Prove?

Greatest Common Divisors

- **Definition**
 - The greatest common divisor \(\text{gcd}(a,b) \) of integers \(a \) and \(b \) (not both 0) is the largest integer \(d \) that is a divisor both of \(a \) and of \(b \).
 - \(d = \text{gcd}(a,b) = \max(\{d| d|a \land d|b\}) \)
 - \(\Leftrightarrow d|a \land d|b \land \forall e \in \mathbb{Z}, (e|a \land e|b) \rightarrow (d \geq e) \)

- **Relative Primality**
 - Integers \(a \) and \(b \) are called relatively prime (co-prime) iff \(\text{gcd}(a,b) = 1 \).
 - Example: 10 and 21

- **Finding gcd using Prime Factorization**
 - When \(a = p_1^{a_1} p_2^{a_2} \ldots p_n^{a_n} \) and \(b = p_1^{b_1} p_2^{b_2} \ldots p_n^{b_n} \),

 \[
 \text{gcd}(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \ldots p_n^{\min(a_n,b_n)}
 \]
Least Common Multiples

- **Definition**
 - The least common multiple \(\text{lcm}(a,b) \) of positive integers \(a \) and \(b \) is the smallest positive integer that is a multiple both of \(a \) and of \(b \).

 \[
 m = \text{lcm}(a,b) = \min\{m | a|m \land b|m\} \\
 \iff a|m \land b|m \land \forall n \in \mathbb{Z}: (a|n \land b|n) \rightarrow (m \leq n)
 \]

- **Finding lcm using Prime Factorization**
 - When \(a = p_1^{a_1}p_2^{a_2} \ldots p_n^{a_n} \) and \(b = p_1^{b_1}p_2^{b_2} \ldots p_n^{b_n} \),

 \[
 \text{lcm}(a,b) = p_1^{\max(a_1,b_1)}p_2^{\max(a_2,b_2)} \ldots p_n^{\max(a_n,b_n)}
 \]

- **Theorem**
 - Let \(a \) and \(b \) be positive integers. Then, \(ab = \gcd(a,b) \times \text{lcm}(a,b) \)

Euclidean Algorithm

- **Background**
 - Finding gcd by prime factorization is inefficient.

- **Euclid’s Theorem**
 - Let \(a = bq + r \) where \(a, b, q, \) and \(r \) are integers. Then, \(\gcd(a,b) = \gcd(b,r) \).

 Prove ?

- **Euclidean Algorithm**
 - To find \(\gcd(a,b) \), apply the Theorem repeatedly until the remainder of 0 occurs.

 Examples ?

 Pseudocode ?
gcd as Linear Combinations

- **Bezout’s Theorem**
 - Let a and b be positive integers. Then, there exist integers s and t such that $\text{gcd}(a,b) = sa + tb$.

- **Extended Euclidean Algorithm**
 - Expressing $\text{gcd}(a,b)$ as a linear combination of a and b.
 - Examples?

- **Some Miscellaneous Lemmas**
 - $\forall a,b,c \in \mathbb{Z}^+, \text{if } \text{gcd}(a,b)=1 \land a \mid bc, \text{then } a \mid c$.
 - If p is prime and $p | a_1 a_2 \ldots a_n$ (for integers a_i) then $\exists i, p | a_i$.
 - $m \in \mathbb{Z}^+, a,b,c \in \mathbb{Z}$, if $ac \equiv bc \pmod{m}$ \land $\text{gcd}(c,m)=1$, then $a \equiv b \pmod{m}$.

4.4. Solving Congruences

- **Linear Congruences**
 - A congruence of the form $ax \equiv b \pmod{m}$ where $m \in \mathbb{Z}^+$, $a,b \in \mathbb{Z}$, and x is a variable.
 - Example: Solve the linear congruence $3x \equiv 4 \pmod{7}$.
 (Find x's that satisfy $3x \equiv 4 \pmod{7}$.)

- **Theorem**
 - If a and m are relatively prime integers and $m > 1$, then there is a unique $\bar{a} \in \mathbb{Z}^+$ that is an inverse of a modulo m.
 - Prove?

 - Example: Find an inverse of 3 modulo 7.
Questions?

- Lecture Slides are found on the Course Website, web.ecs.baylor.edu/faculty/cho/2350