Chapter 4, Number Theory (2)

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

4.3. Primes and Greatest Common Divisors

- **Primes**
 - An integer $p > 1$ is prime **iff** the only positive factors of p are 1 and p.
 - For example, 2, 3, 5, 7, 11, 13, 17, ...
 - A non-prime integers $c > 1$ is called composite.

- **Theorem 1 (Prime Factorization)**
 - Every positive integer greater than 1 has a unique representation as a prime or as the product of a non-decreasing series of two or more primes.
 - For example,
 - $4 = 2^2$
 - $100 = 2^2 \cdot 5^2$
 - $999 = 3^3 \cdot 37$
 - $2001 = 3 \cdot 23 \cdot 29$
Trial Division

- **Theorem 2**
 - If \(n \) is a composite integer, \(n \) has a prime divisor less than or equal to \(\sqrt{n} \)
 - Example: Show that 101 is prime.
 - Primes not exceeding \(\sqrt{101} \) are 2, 3, 5, and 7.
 - 101 is not divisible by any of 2, 3, 5, or 7.
 - Therefore, 101 is a prime.

- **Theorem 3**
 - There are infinitely many primes.
 - Prove ?

Greatest Common Divisors

- **Definition**
 - The greatest common divisor \(\gcd(a,b) \) of integers \(a \) and \(b \) (not both 0) is the largest integer \(d \) that is a divisor both of \(a \) and of \(b \).
 - \(d = \gcd(a,b) = \max\{\{d| d|a \land d|b\}\} \)
 - \(\Leftrightarrow d|a \land d|b \land \forall e \in \mathbb{Z}, (e|a \land e|b) \rightarrow (d \geq e) \)

- **Relative Primality**
 - Integers \(a \) and \(b \) are called relatively prime (co-prime) if \(\gcd(a,b) = 1 \).
 - Example: 10 and 21

- **Finding gcd using Prime Factorization**
 - When \(a = p_1^{a_1}p_2^{a_2} \ldots p_n^{a_n} \) and \(b = p_1^{b_1}p_2^{b_2} \ldots p_n^{b_n} \),

 \[
 \gcd(a,b) = p_1^{\min(a_1,b_1)}p_2^{\min(a_2,b_2)} \ldots p_n^{\min(a_n,b_n)}
 \]
Least Common Multiples

- **Definition**
 - The least common multiple \(\text{lcm}(a,b) \) of positive integers \(a \) and \(b \) is the smallest positive integer that is a multiple both of \(a \) and of \(b \).
 - \(m = \text{lcm}(a,b) = \min\{m| a|m \land b|m\} \)
 - \(\iff a|m \land b|m \land \forall n \in \mathbb{Z}: (a|n \land b|n) \rightarrow (m \leq n) \)

- **Finding lcm using Prime Factorization**
 - When \(a = p_1^{a_1}p_2^{a_2} \ldots p_n^{a_n} \) and \(b = p_1^{b_1}p_2^{b_2} \ldots p_n^{b_n} \),
 - \(\text{lcm}(a,b) = p_1^{\max(a_1,b_1)}p_2^{\max(a_2,b_2)} \ldots p_n^{\max(a_n,b_n)} \)

- **Theorem**
 - Let \(a \) and \(b \) be positive integers. Then, \(ab = \gcd(a,b) \times \text{lcm}(a,b) \)

Euclidean Algorithm

- **Background**
 - Finding gcd by prime factorization is inefficient.

- **Euclid’s Theorem**
 - Let \(a = bq + r \) where \(a, b, q, \) and \(r \) are integers. Then, \(\gcd(a,b) = \gcd(b,r) \).
 - Prove ?

- **Euclidean Algorithm**
 - To find \(\gcd(a,b) \), apply the Theorem repeatedly until the remainder of 0 occurs.
 - Examples ?
 - Pseudocode ?
gcd as Linear Combinations

- **Bezout’s Theorem**
 - Let \(a \) and \(b \) be positive integers. Then, there exist integers \(s \) and \(t \) such that \(\gcd(a,b) = sa + tb \).

- **Extended Euclidean Algorithm**
 - Expressing \(\gcd(a,b) \) as a linear combination of \(a \) and \(b \).
 - Examples ?

- **Some Miscellaneous Lemmas**
 - \(\forall a,b,c \in \mathbb{Z}^+, \text{ if } \gcd(a,b) = 1 \land a \mid bc \text{, then } a \mid c \).
 - If \(p \) is prime and \(p \mid a_1a_2 \ldots a_n \) (for integers \(a_i \)) then \(\exists i \mid p \mid a_i \).
 - \(m \in \mathbb{Z}^+, a,b,c \in \mathbb{Z}, \text{ if } ac \equiv bc \pmod{m} \land \gcd(c,m) = 1, \text{ then } a \equiv b \pmod{m} \).

4.4. Solving Congruences

- **Linear Congruences**
 - A congruence of the form \(ax \equiv b \pmod{m} \) where \(m \in \mathbb{Z}^+, a,b \in \mathbb{Z} \), and \(x \) is a variable.
 - Example: Solve the linear congruence \(3x \equiv 4 \pmod{7} \).
 (Find \(x \)'s that satisfy \(3x \equiv 4 \pmod{7} \).)

- **Theorem**
 - If \(a \) and \(m \) are relatively prime integers and \(m > 1 \),
 then there is a unique \(\hat{a} \in \mathbb{Z}^+ \) that is an inverse of \(a \) modulo \(m \).
 - Prove ?

- Example: Find an inverse of 3 modulo 7.
Chinese Remainder Theorem

- **Theorem**
 - Let \(m_1, \ldots, m_n \) be pairwise relatively prime integers greater than 1 and \(a_1, \ldots, a_n \) arbitrary integers.
 - Then, the system of equations \(x \equiv a_i \pmod{m_i} \) (for \(i = 1 \) to \(n \)) has a unique solution modulo \(m = m_1m_2 \cdots m_n \).

- Prove?

- Examples?

Questions?

- Lecture Slides are found on the Course Website, web.ecs.baylor.edu/faculty/cho/2350