Chapter 4, Number Theory (1)

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

4.1. Divisibility and Modular Arithmetic

Division
- Let \(a, b \in \mathbb{Z} \) where \(a \neq 0 \).
- "a divides b" if there is \(c \in \mathbb{Z} \) such that \(b = ac \) (if \(b/a \) is an integer).
- Notation: \(a \mid b \)
- \(a \) is a factor of \(b \).
- \(b \) is a multiple of \(a \).
- "a does not divide b" otherwise.

Theorems
- \((a \mid b \land a \mid c) \rightarrow a \mid (b+c) \)
- \(a \mid b \rightarrow a \mid bc \), \(\forall c \in \mathbb{Z} \)
- \((a \mid b \land b \mid c) \rightarrow a \mid c \)
- Corollary: \((a \mid b \land a \mid c) \rightarrow a \mid (mb+nc) \), \(m, n \in \mathbb{Z} \)
The Division Algorithm

- **Theorem**
 - Let \(a \in \mathbb{Z} \) and \(d \in \mathbb{Z}^+ \).
 - There are unique \(q, r \in \mathbb{Z} \) (\(0 \leq r < d \)) such that \(a = dq + r \).
 - \(d \): divisor, \(a \): dividend, \(q \): quotient, \(r \): remainder

- **div Operator**
 - The quotient \(q = a \div d \)
 - How to compute \((a \div d)\)?

- **mod Operator**
 - The remainder \(r = a \mod d \)
 - How to compute \((a \mod d)\)?

Modular Arithmetic

- **Modular Congruence**
 - Let \(a, b \in \mathbb{Z} \) and \(m \in \mathbb{Z}^+ \).
 - \(a \) is congruent to \(b \) modulo \(m \) if \(m | (a-b) \).
 - Notation: \(a \equiv b \pmod{m} \)

- **Theorems**
 - \(a \equiv b \pmod{m} \) \iff \(a \mod m = b \mod m \)
 - \(a \equiv b \pmod{m} \) \iff \(\exists k \in \mathbb{Z}, a = b + km \)
 - If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then
 - \(a+c \equiv b+d \pmod{m} \)
 - \(ac \equiv bd \pmod{m} \)
 - Corollary: \((a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m \)
 - Corollary: \(ab \mod m = ((a \mod m)(b \mod m)) \mod m \)
Questions?

- Lecture Slides are found on the Course Website, web.ecs.baylor.edu/faculty/cho/2350