Chapter 3, Algorithms

Young-Rae Cho
Associate Professor
Department of Computer Science
Baylor University

3.1. Algorithms

- **Definition**
 - A finite sequence of precise instructions for performing a specific task or for solving a problem

- **Examples**

```python
BottlesOfBeer(x)
for i ← x down to 1
    sing "i bottles of beer on the wall, i bottles of beer,"
    sing " take one down, pass it around, (i-1) bottles of beer on the wall."
    sing " No bottles of beer on the wall, no bottles of beer,"
    sing " Go to the store, buy some more, x bottles of beer on the wall."
```
Description of Algorithms

How to Express Algorithms?
- Natural languages (English)
- Programming languages (Code)
- Flow chart or Diagram
- Pseudocode
 - Compact and informal high-level description of algorithms
 - Ignoring details in codes,
 - However, unambiguous for the task

Evaluation of Algorithms

How to Evaluate Algorithms?
- Correctness
 - An algorithm should produce the correct output values for each set of input values.
- Finiteness
 - An algorithm should produce the desired output after a finite number of steps for any input.
- Effectiveness
 - An algorithm should be performed in a finite amount of time.
 - Big-O notation is used.
- Generality
 - An algorithm should be applicable for all problems of the desired form, not just for a particular set of input values.

FIBONACCI(n)

```plaintext
F_1 ← 1
F_2 ← 1
for i ← 3 to n
    F_i ← F_{i-1} + F_{i-2}
return F_n
```
Exhaustive Search Algorithms

- **Procedure of Exhaustive Search Algorithm**
 - Also called Brute force algorithm
 - Examine all possible output values (or cases) to find a solution.

- **Advantages, Disadvantages?**

- **Examples**
 - Finding the smallest number in a finite sequence of numbers
 - Pseudocode?
 - Sorting the numbers in a finite sequence from the smallest to the largest
 - Pseudocode?

Greedy Algorithms

- **Procedure of Greedy Algorithms**
 - Determine the optimal structure of a problem.
 - Find the local optimal solution at each step, instead of considering the entire sequence of steps.

- **Advantages, Disadvantages?**

- **Examples**
 - Counting a certain amount of money using the fewest bills and coins
 - Optimal structure?
 - Assigning m jobs into n processors to finish all the jobs as early as possible (where $m > n$)
 - Optimal structure?
Dynamic Programming

- Procedure of Dynamic Programming
 - Formulate the problem recursively by breaking it down into sub-problems
 - Build solutions in a linear fashion (repeatedly use the result of a sub-problem to solve the next sub-problem)

- Advantages, Disadvantages?

- Examples
 - Rock game from 2 piles of rocks
 - A player takes either 1 rock (from either pile) or 2 rocks (1 from each)
 - The player who takes the last rock wins

Manhattan Tourist Problem

- Problem Definition
 - A tourist seeks a path to travel with the most attractions in Manhattan road map (grid structure)
 - Restrictions
 - A path from a source to a sink
 - A path only eastward and southward
Formulation of Manhattan Tourist Problem

- **Goal**
 - Finding the strongest path from a source to a sink in a weighted grid
 - The weight of an edge is defined as the number of attractions
 - The path strength is measured by summing the weights on the path

- **Input**
 - A weighted grid G with two distinct vertices, source and sink

- **Output**
 - A strongest path in G from the source to the sink

Example of Manhattan Tourist Problem

- **Example**
 ![Example Diagram](image-url)
Solving Manhattan Tourist Problem

- **Solving by Exhaustive Search Algorithm**
 - Algorithm
 1. Enumerate all possible paths from the *source* to the *sink*
 2. Compute the path strength for all possible paths
 3. Find the strongest path
 - Problems?

- **Solving by Greedy Algorithm**
 - Algorithm
 1. Starting from the *source*, select the edge having the highest weight repeatedly until it reaches the *sink*
 - Problems?

- **Solving by Dynamic Programming**

3.2. The Growth of Functions

- **Background**
 - Analysis of an algorithm
 - The running time to execute the algorithm
 - The number of operations to execute the algorithm
 - Called “time complexity” of the algorithm
 - The asymptotic behavior of the function of the algorithm with respect to the size of input
 - How fast the function of the algorithm grows as input size increases

- **Examples**
 - Suppose an algorithm A takes $f_A(n)=30n+8$ microseconds to process n records of input, while an algorithm B takes $f_B(n)=n^2+1$ microseconds to process n records of input
Big-O Notation

Definition of Big-O Notation
- Let f and g be functions \mathbb{R} (or \mathbb{Z}) → \mathbb{R}.
- $f(x) = O(g(x))$ if there are constants C and k such that $|f(x)| \leq C |g(x)|$ for all $x > k$.
- It is read as “$f(x)$ is big-O of $g(x)$”.
- An asymptotic upper bound.

Examples?

Theorem
- Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ (i.e. a polynomial of degree n), where $a_0, a_1, \ldots, a_{n-1}, a_n$ are real numbers. Then, $f(x) = O(x^n)$.

The Growth of Functions in Big-O Estimates

The Growth of Common Functions

The Growth of Combinations of Functions
- Suppose that $f_1(x) = O(g_1(x))$ and $f_2(x) = O(g_2(x))$.
- $(f_1 + f_2)(x) = O(\max\{|g_1(x)|, |g_2(x)|\}) \rightarrow$ Proved using the triangle inequality.
- $(f_1 f_2)(x) = O(g_1(x) g_2(x))$.
Big-Ω Notation

- **Definition of Big-Ω Notation**
 - Let \(f \) and \(g \) be functions \(\mathbb{R} \) (or \(\mathbb{Z} \)) → \(\mathbb{R} \).
 - \(f(x) = \Omega(g(x)) \) if there are constants \(C \) and \(k \) such that \(|f(x)| \geq C |g(x)| \) for all \(x > k \).
 - It is read as "\(f(x) \) is big-Omega of \(g(x) \)."
 - An asymptotic lower bound

- **Examples?**

Big-Θ Notation

- **Definition of Big-Θ Notation**
 - Let \(f \) and \(g \) be functions \(\mathbb{R} \) (or \(\mathbb{Z} \)) → \(\mathbb{R} \).
 - \(f(x) = \Theta(g(x)) \) if there are constants \(C_1, C_2 \) and \(k \) such that \(C_1 |g(x)| \leq |f(x)| \leq C_2 |g(x)| \) for all \(x > k \).
 - It is read as "\(f(x) \) is big-Theta of \(g(x) \)."
 - An asymptotic tight bound

- **Examples?**

- **Theorem**
 - \(f(x) = \Theta(g(x)) \) if \(f(x) = O(g(x)) \) and \(f(x) = \Omega(g(x)) \).
3.3. Complexity of Algorithms

- **Computational Complexity**
 - Effectiveness (or Efficiency) analysis of an algorithm
 - Time complexity
 - The running time (the number of operations) to execute the algorithm
 - Space complexity
 - The number of memory bits required to execute the algorithm

- **Time Complexity**
 - Worst-case complexity?
 - Average-case complexity?

Questions?

- Lecture Slides are found on the Course Website, web.ecs.baylor.edu/faculty/cho/2350