2.4. Sequences and Summations

- **Sequence**
 - An ordered n-tuple where each element in the sequence has an associated index.
 - A function $f: I \rightarrow S$ where I is a set of indices ($I \subseteq \mathbb{N}$ or $I \subseteq \mathbb{Z}^+$) and S is a set of objects.
 - $f(n) = a_n$, where n is an index and a_n is called a term of the sequence.
 - Example
 - A sequence $\{a_n\} = \{0, 1, 4, 9, 16, \ldots \}$, is $\forall n \in \mathbb{N}$, $a_n = n^2$

- **Summation**
 - The sum of the terms in a sequence.
Examples of Sequences

- **Sequence with Repetition**
 - Unlike sets, a sequence may contain repeated instances of an element.
 - \(\{b_n\} = 1, -1, 1, -1, ... \)

- **Geometric Progression**
 - A sequence in the form, "a, ar, ar^2, ..., ar^n, ..."
 - The initial term a, the common ratio \(r \in \mathbb{R} \).
 - Examples?

- **Arithmetic Progression**
 - A sequence in the form, "a, a+d, a+2d, ..., a+nd, ..."
 - The initial term a, the common difference \(d \in \mathbb{R} \).
 - Examples?

Recurrence Relations

- **Recurrence Relation for a Sequence \(\{a_n\} \)**
 - An equation that expresses \(a_n \) in terms of one or more previous terms.
 - A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
 - Initial conditions: the terms that precede the first term where the recurrence relation takes effect.

- **Examples of Recurrence Relations**
 - Fibonacci sequence?
 - More examples?
More Examples of Sequences

- **Perfect Squares, Perfect Cubes, Factorial**

<table>
<thead>
<tr>
<th>nth Term</th>
<th>First 10 Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^2</td>
<td>1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...</td>
</tr>
<tr>
<td>n^3</td>
<td>1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ...</td>
</tr>
<tr>
<td>n^4</td>
<td>1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, ...</td>
</tr>
<tr>
<td>2^n</td>
<td>2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...</td>
</tr>
<tr>
<td>3^n</td>
<td>3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, ...</td>
</tr>
<tr>
<td>$n!$</td>
<td>1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, ...</td>
</tr>
</tbody>
</table>

Summations

- **Summation Notation**
 - Given a sequence $\{a_n\}$, an integer lower bound (or limit) $j \geq 0$, and an integer upper bound $k \geq j$, the summation of $\{a_n\}$ from a_j to a_k is

\[\sum_{i=j}^{k} a_i = a_j + a_{j+1} + ... + a_k \]

 - where i is called the index of summation.
 - Examples?

- **Nested Summation**
 - Examples?
Summation Manipulation

Rules

- **Distributive law**
 \[\sum_i c f(x) = c \sum_i f(x) \]

- **Commutativity**
 \[\sum_i f(x) + g(x) = \left(\sum_i f(x) \right) + \left(\sum_i g(x) \right) \]

- **Index shifting**
 \[\sum_{i=j}^n f(i) = \sum_{k=j-n}^{n-j} f(k) \]

- **Sequence splitting**
 \[\sum_{i=j}^n f(i) = \sum_{i=j}^m f(i) + \sum_{i=m+1}^n f(i) \quad \text{if } j \leq m < k \]

- **Order reversal**
 \[\sum_{i=0}^n f(i) = \sum_{i=0}^n f(n-i) \]

- **Grouping**
 \[\sum_{i=1}^{2k} f(i) = \sum_{i=1}^k \left(f(2i-1) + f(2i) \right) \]

Summation Formulae

Gauss’ Trick ?

\[\sum_{i=1}^n i = \frac{n(n+1)}{2} \]

Summation Formulae

<table>
<thead>
<tr>
<th>Sum</th>
<th>Closed Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum_{i=0}^{n} a^i) (r \neq 0)</td>
<td>(\frac{a^{n+1} - 1}{r - 1}) (r \neq 1)</td>
</tr>
<tr>
<td>(\sum_{i=1}^{n} i)</td>
<td>(\frac{n(n+1)}{2})</td>
</tr>
<tr>
<td>(\sum_{i=1}^{n} i^2)</td>
<td>(\frac{n(n+1)(2n+1)}{6})</td>
</tr>
<tr>
<td>(\sum_{i=1}^{n} i^3)</td>
<td>(\frac{n^2(n+1)^2}{4})</td>
</tr>
<tr>
<td>(\sum_{i=0}^{n} x^i), (</td>
<td>x</td>
</tr>
<tr>
<td>(\sum_{i=1}^{n} x^{i-1}), (</td>
<td>x</td>
</tr>
</tbody>
</table>
2.5. Cardinality of Sets

- **Cardinality of Sets**
 - The sets A and B have the same cardinality (|A| = |B|) iff there is a one-to-one correspondence from A to B.

- **Countable / Uncountable Sets**
 - A set that is either finite or has the same cardinality as the set of positive integers is called countable.
 - A set that is not countable is called uncountable.
 - Examples?