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ABSTRACT

Models of quantum disentanglement are developed for nanometer-scale molecular charge qubits (MCQs). Two MCQs, A and B, are pre-
pared in a Bell state and separated for negligible A–B interactions. Interactions between the local environment and each MCQ unravels A–B
entanglement during coherent system+environment evolution. Three models are used for dynamics: (1) a previously developed numerical
model, in which both AB and environment E are modeled explicitly; (2) an exact, semi-analytic model, in which only the dynamics of AB
are calculated, and (3) an approximate model developed from the semi-analytic model and assumptions about randomness in E. In the
approximate model, the non-zero coherences of the density operator for AB decay with a Gaussian time dependence. This provides a time
scale for system dynamics in the exact models as well. This time scale is related directly to the strength of AB–E interaction. This time scale
describes cases where environmental interaction with one target MCQ is dominant, generalizing a previous time scale applicable only when
both MCQs have roughly the same strength of interaction with the local environment. Entanglement is measured using two-qubit correla-
tion functions, the dynamics of which are used to demonstrate the effectiveness of the time scale. The early-time decay of coherences and
the loss of entanglement are well-characterized as Gaussian, a behavior that Markovian models for memoryless environments cannot
capture. The approximate Gaussian model may be used to describe the dynamics of MCQ disentanglement under the influence of environ-
ments modeled here, as well as other environments where randomness is present.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129175

I. INTRODUCTION

Quantum computing promises new ways to process informa-
tion and to efficiently solve problems that are difficult or impossible
for classical computers.1,2 Such applications include Shor’s algo-
rithm3 for defeating a widely used encryption scheme, Grover’s
search algorithm,4 simulating quantum systems,1 and optimization
problems.5 Quantum cryptography promises provably secure
methods for sharing information.6,7 Entanglement between qubits
is an essential resource in both quantum computation and
communication, but it is easily unraveled by qubit–environment
interactions.8

Several physical implementations exist for quantum bits
(qubits), and still others could be invented. This paper focuses on
molecular charge qubits (MCQs), which could be implemented
using π-conjugated block copolymers9 or multi-metal-centered
mixed-valence molecules, suitable also for a general-purpose classi-
cal computing paradigm known as quantum-dot cellular automata
(QCA).10–12 Quality factors of �103–104 have been reported for

MCQ systems,9 making it feasible to process information using
MCQs.

In this paper, the dynamics of disentanglement are studied in
MCQs using computational and analytic methods. Here, a
double-quantum-dot (DQD) molecule provides an MCQ. A
remotely separated target pair of MCQs is prepared in a Bell state
for maximal entanglement. Vast spatial separation eliminates
Coulomb coupling between the target MCQs. Each MCQ in the
pair is allowed to interact Coulombically with its local environ-
ment, which consists of M charge-neutral DQD molecules. This is
the starting point for a time evolution, over which entanglement in
AB is quantified using quantum correlation functions. Here, the
time dependence of disentanglement is found, along with a charac-
teristic time scale.

This work generalizes a previously found time scale for envi-
ronmentally driven disentanglement in the target Bell pair.13

Previous work was constrained to a regime in which the strength of
local environmental interactions was approximately equal for each
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of the two target qubits. The previously used time scale does not
generalize to cases where one MCQ in the target pair suffers the
dominant environmental interaction. In this paper, a more general
time scale was found.

A previously developed numerical model13 for the dynamics
of disentanglement in AB is reviewed, and an exact, semi-analytic
model is developed in Sec. II. Additionally, the semi-analytic model
is used with assumptions about randomness in E to obtain an
approximate model for the dynamics of disentanglement, as well as
to obtain a time scale characteristic of those dynamics. The time
scale is related directly to energies of interaction between each
target MCQ and its local environment and also characterizes the
dynamics of the exact models. Quantum correlation functions are
used to quantify entanglement in the target MCQ pair and to dem-
onstrate the effectiveness of the new time scale in characterizing the
dynamics of disentanglement. The dynamics of disentanglement
are seen to have a Gaussian form unattainable using Markovian
models of a memoryless environment. The approximate Gaussian
model for disentanglement could be used to describe AB dynamics
not only in the environments studied here, but also in other ran-
domly arranged non-Markovian environments.

II. MODELS OF DISENTANGLEMENT

A. A molecular charge qubit

A mixed-valence compound such as diferrocenyl acetylene
(DFA) can function as a molecular DQD.14,15 Here, two iron
centers provide redox centers, each of which functions as a molecu-
lar quantum dot. While the DFA molecule must be singly ionized
to provide useful charge states for this application, other charge-
neutral (zwitterionic) molecules are under study for both molecular
charge qubits and for energy-efficient, beyond-CMOS classical
computing applications.14,16,17 In this paper, charge-neutral DQD
molecules similar to DFA are considered.

Two charge-localized states of a molecular DQD provide the
computational basis states for a single MCQ (see Fig. 1). Here, one
mobile electron occupies one of two quantum dots. Also, a fixed
charge þe=2 (not pictured) is assumed to reside at each dot, pro-
viding net charge neutrality for each DQD. Here, e is the funda-
mental charge, and the dots are treated as charged points separated
by distance a. It will be helpful to quantify the charge state of a

DQD in a single number, the polarization, P, given by P ¼ σ̂zh i,
where σ̂z is one of the Pauli operators {σ̂x , σ̂y , σ̂z}.

B. A Bell pair

The system of interest, AB, is a target pair of entangled molec-
ular charge qubits, designated A and B. The pair AB is prepared in
a Bell state as the initial state of the time evolution

ΨAB 0ð Þj i ¼ 1ffiffiffi
2

p 0Aj i � 0Bj i þ 1Aj i � 1Bj ið Þ: (1)

Henceforth, a more compact notation is used: ΨAB 0ð Þj i
¼ 1=

ffiffiffi
2

p� �
00j i þ 11j ið Þ, where mAmBj i ¼ mAj i � mBj i denotes

a product of A and B computational basis states and
mA, mB [ 0, 1f g. It is assumed that A and B are separated spatially
so that Coulomb interactions between them are negligible, but that
each MCQ interacts with its own local environment. This separa-
tion could be established after preparation in ΨAB 0ð Þj i, or some
remote entanglement mechanism could be applied after separation.
The dynamics of the loss of entanglement in AB—not the means of
entanglement—are the focus of this work.

C. The environment

The local environment for each MCQ in AB is explicitly
modeled using M DQDs surrounding each target MCQ.18 The M
environmental DQDs are arranged on the surface of a sphere of
radius RX centered on qubit X [ {A, B}, as depicted in Fig. 2.
Here, the orientations and positions on the sphere of the environ-
mental molecules are randomized. Generally, RA = RB so that one
MCQ in AB may have a stronger environmental interaction
than does its partner. This generalizes a previous study, in which
RA ¼ RB was a constraint,13 so that neither MCQ suffered the
dominant environmental interaction. We designate the two local

FIG. 1. Localized electronic states of a molecular double quantum dot (DQD)
system provide the two classical states of a qubit. Black circles represent the
two quantum dots, and a connecting bar indicates a tunneling path. A red disk
represents the mobile electron.

FIG. 2. The target qubits, A and B, are entangled and coupled to local environ-
ments comprised of randomly oriented DQDs. Colored spheres represent molec-
ular quantum dots, and a connecting bar indicates the intramolecular tunneling
path. The MCQs of the target pair are marked with purple-colored dots. There
are M environmental molecules distributed randomly and with random orienta-
tions about the surface of a sphere of radius RX for qubit X [ {A, B}.
The target pair AB is entangled over a large distance d � RA, RB so that
MCQ A and its environment have negligible electrostatic interactions with
MCQ B and its environment.
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environments together as the complete environment, E, with
N ¼ 2M environmental DQDs. Environmental product states may
be formed by taking tensor products

~mp

�� � ¼ mNj i mN�1j i � � � mkj i � � � m2j i m1j i, (2)

where a counting number, k, indexes the environmental DQDs,
and mk [ {0, 1} labels a classical basis state for the kth environ-
mental molecule. The N-element binary vector,

~mp ¼ mNmN�1 � � �mk � � �m2m1, (3)

then, specifies an environmental product state, and p [
{0, 1, 2, . . . , 2N � 1} is a whole-number representation of ~mp.

In this paper, the initial state of the environment, E 0ð Þj i, is a
product state of environmental DQDs, each prepared in a superpo-
sition ψkj i ¼ (1=

ffiffiffi
2

p
) 0j i þ eifk 1j i� �

,

E 0ð Þj i ¼ ψNj i ψN�1j i � � � ψ2j i ψ1j i:
Here, the relative phase, fk, is randomly selected. In the environ-
mental classical basis, { ~mp

�� �
}, the state E 0ð Þj i may be written as

E 0ð Þj i ¼ 1
2N=2

X
~mp

eiΦ ~mpð Þ ~mp

�� �
, (4)

where

Φ ~mp
� � ¼XN

k¼1

~mp
� �

kfk,

and ~mp
� �

k denotes the kth bit of ~mp.

D. System dynamics

The Hamiltonian of the global system, Ω ; ABE, is deter-
mined by the Coulomb interactions between all the DQDs of Ω.
Let U j,k

mj ,mk be the electronstatic potential energy between the jth
DQD in state mj and the kth DQD in state mk. This energy is
given by

U j,k
mj ,mk

¼ P mj
� �

P mkð Þe2
16πϵ0

1

r j,k0,0
� 1

r j,k0,1
� 1

r j,k1,0
þ 1

r j,k1,1

" #
, (5)

where ϵ0 is the permittivity of free space; r j,kmj ,mk is the distance
between dot mj in DQD j and dot mk in DQD k; P(m) is polariza-
tion of a DQD in state m; and P(1) ¼ þ1 and P(0) ¼ �1.

Let EmAmB ~mp
� �

be the total electrostatic potential energy of a
global state ΦmA ,mB ;~mp

�� E
defined as

ΦmA ,mB ;~mp

�� E
¼ mAmBj i � ~mp

�� �
:

The energy EmAmB ~mp
� �

is calculated by summing over all DQD
pairwise interactions in Ω,

EmAmB ~mp
� �¼ ΦmA ,mB ;~mp jĤjΦmA ,mB ;~mp

D E
¼ 1
2
j= k

X
U j,k
mj ,mk

: (6)

Here, Ĥ is the Hamiltonian for Ω, and the indices of summation, i
and j, include each DQD in Ω: i, j[ A, B, 1, 2, . . . , Nf g.

To eliminate complicating dissipative effects, this study of dis-
entanglement is constrained to the regime where tunneling
between states 0j i and 1j i is suppressed. In this limit, the global
Hamiltonian may be written as

Ĥ ¼
X
mA,mB

mAmBj i mAmBh j �
X
~mp

EmAmB ~mp
� �

~mp

�� �
~mp
	 ��:

The Hamiltonian is diagonal in the global basis {
��ΦmAmB ;~mp

�
}.

1. Global system dynamics

The dynamics of the global system are described exactly
within this model using the Schrödinger equation,

@

@t
Ψ tð Þj i ¼ � i

�h
Ĥ Ψ tð Þj i :

The time-dependent state, Ψ tð Þj i, is obtained by applying the time
evolution operator, Û tð Þ ¼ exp (�iĤt=�h) to the initial state
Ψ 0ð Þj i,

Ψ tð Þj i ¼ Û tð Þ Ψ tð Þj i: (7)

2. Reduced dynamics of the target MCQ pair

Unlike the initial state, the time-dependent Ψ tð Þj i generally is
not a product of an AB state ΨAB tð Þj i and an environmental state
E tð Þj i. This is due to the interaction between AB and E, which
causes entanglement between AB and E over time, as well as the
unraveling of A-B entanglement.

While AB may no longer have its own local state for t . 0,
the best time-dependent, local description possible for AB is its
reduced density matrix, ρ̂(r)AB(t). This is obtained by forming the
time-dependent global density matrix, ρ̂Ω(t) ¼ Ψ tð Þj i Ψ tð Þh j, and
tracing ρ̂Ω(t) over the environmental degrees of freedom,

ρ̂(r)AB(t) ¼ TrE ρ̂Ω(t)ð Þ ¼
X
jE

jE jρ̂ΩjjEh i: (8)

Here, TrE denotes the trace over the degrees of freedom of E, and
jEj if g is any orthonormal basis for the E. Henceforth, we drop the

superscript rð Þ from the reduced density matrix for AB.
This model is designated as the “numerical” model, in which

the dynamics of AB and E are calculated explicitly in order to
obtain ρ̂AB tð Þ.

E. Semi-analytic model

Here, an analytical treatment is used to find ρ̂AB(t) without
explicitly calculating the dynamics of E.

The initial state vector for the system and environment
is a product of the system and environment initial states from
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Eqs. (1) and (4),

Ψ 0ð Þj i ¼ 1ffiffiffi
2

p 00j i þ 11j ið Þ � 1

2N=2

X
~mp

eiΦ ~mpð Þ ~mp

�� �
: (9)

Because Ĥ is diagonal in the global basis {
��ΦmAmB ;~mp

�
}, so also is

the time evolution operator, Û tð Þ,

Û tð Þ ¼
X
mA ,mB

mAmBj i mAmBh j �
X
~mp

e�iEmAmB ~mpð Þt=�h ~mp

�� �
~mp
	 ��: (10)

Thus, the time-dependent global state Ψ tð Þj i is found by using
Eqs. (7), (9), and (10),

Ψ tð Þj i ¼ 1
2 Nþ1ð Þ=2 00j i �

X
~mp

e�iE00 ~mpð Þt=�heiΦ ~mpð Þ ~mp

�� �

þ 1
2 Nþ1ð Þ=2 11j i �

X
~mp

e�iE11 ~mpð Þt=�heiΦ ~mpð Þ ~mp

�� �
:

This may be used to form the global ρ̂Ω(t), which, when traced
over the classical environmental basis, ~mp

�� �
 �
, yields the reduced

density matrix for the target MCQ pair,

ρ̂AB tð Þ ¼
1
2

00j i 00h j þ 11j i 11h jð Þ þ 1
2Nþ1

00j i 11h j
X
~mp

e�iωflip ~mpð Þt

þ 1
2Nþ1

11j i 00h j
X
~mp

eiωflip ~mpð Þt : (11)

Here, we have defined the double-bit-flip frequency

ωflip ~mp
� �

;
1
�h

E11 ~mp
� �� E00 ~mp

� �� � ¼ 1
�h
Eflip
~mp
, (12)

which is proportional to the double-bit-flip energy

Eflip
~mp

¼ E11 ~mp
� �� E00 ~mp

� �
, (13)

the cost of a double bit flip of AB given environmental state ~mp

�� �
.

We designate the model of Eq. (11) a “semi-analytic” model,
since an analytic treatment was used to obtain Eq. (11), but the
numerous energies, {Eflip

~mp
}, and ρ̂AB tð Þ must be evaluated numeri-

cally. This model alleviates the significant burden of explicitly
calculating the dynamics of E.

It is noteworthy that the coherences 00jρ̂AB tð Þj11h i
¼ 11jρ̂AB tð Þj00h i* of ρ̂AB tð Þ in Eq. (11) include summations over
complex exponentials. This allows for the following interpretation:
the distribution of bit flip frequencies {ωflip

~mp
} (or energies, {Eflip

~mp
})

approximates a Fourier series for 00jρ̂AB tð Þj11h i and 11jρ̂AB tð Þj00h i;
and these coherences approximate inverse Fourier transforms of
the distributions {ωflip

~mp
} and {Eflip

~mp
}.

F. Approximate Gaussian model

Now, consider the summations in Eq. (11). Together with the
factor 1=2N , these may be written as

1
2N
X
~mp

e+iωflip ~mpð Þt ¼
X
k

1
k!

+itð Þk 1
2N
X
~mp

ωk
flip ~mp
� �

¼
X
k

1
k!

+itð Þk ωk
	 �

, (14)

where we define

ωk
	 �

;
1
2N
X
~mp

ωk
flip ~mp
� �

:

Here, ωk
	 �

is an average over {ωk
flip ~mp
� �

}, and we identify ω1h i ¼ �ω

and
ffiffiffiffiffiffiffiffiffi
ω2h ip ¼ ωflip

RMS as average and root mean square values,
respectively, of the frequencies {ωflip ~mp

� �
}. Similarly, we can define

averages of the double-bit-flip energies and their powers,

Eflip
~mp

� k� �
;

1
2N
X
~mp

Eflip
~mp

� k
¼ �hn ωk

	 �
,

with a mean double-bit-flip energy,

�Eflip
~mp

¼ (Eflip
~mp
)
1D E

¼ �h�ω, (15)

and a root mean square double-bit-flip energy,

σE ¼ Eflip
RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Eflip

~mp
)
2D Er

¼ �hωflip
RMS: (16)

For environments with randomly placed and randomly oriented
DQDs—more generally than just the spherical environments
modeled in this paper—the frequencies {ωflip ~mp

� �
} and energies

{Eflip
~mp
(~mp)} will tend to be normally distributed. Thus, on average, a

random environment will have small ωk
	 �

and small (Eflip
~mp
(~mp))

kD E
for odd k. Neglecting these terms from Eq. (14) as well as terms
beyond the third order in t, we have the approximation

1
2N
X
~mp

e+iωflip ~mpð Þt ¼ 1+ it ω1
	 �� t2

2
ω2
	 �

+ i
t3

3!
ω3
	 �þ � � �

≃ 1�
ωflip
RMSt

� 2
2

≃ e� ωflip
RMSð Þ2t2=2: (17)

Now, inserting Eq. (17) into ρ̂AB tð Þ of Eq. (11), the coherences
00jρ̂ABj11h i ¼ 11jρ̂ABj00h i* have a time dependence with a
Gaussian decay,

ρ̂AB tð Þ ≃
1
2
[ 00j i 00h j þ 11j i 11h j

þ e� ωflip
RMSð Þ2t2=2 00j i 11h j þ 11j i 00h jð Þ]: (18)

The main assumption behind the Gaussian approximate
model for ρ̂AB tð Þ is randomness in the environment. The Gaussian
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model could be applied more broadly to describe the dynamics of
disentanglement due to other environments where randomness is a
feature as well.

1. Application to local spherical environments

The double-sphere environments studied in this context
provide a concrete example of this analysis. In Fig. 3(a) (upper
panel), a histogram of the energies {Eflip

~mp
} is plotted for a particular

random environment. To provide a qualitative visual cue for how
Gaussian the distribution is, a fitting function,

g Eflip
~mp

� 
¼ Ae

� Eflip
~mp

��Eflip
~mp

� 2

=2σ2
E ,

also is plotted (dashed red curve), where A is chosen to minimize
curve-fitting error. The highly Gaussian energy distribution shown
in the upper panel results in a highly Gaussian time dependence
for the magnitude of the coherences of ρ̂AB, shown in the lower
panel of 3(a). Here, the ratio f tð Þ is plotted, which is defined as the
magnitude of non-zero coherences relative to their initial magni-
tudes,

f tð Þ ; 00jρ̂AB tð Þj11h ij j
00jρ̂AB 0ð Þj11h ij j ¼

11jρ̂AB tð Þj00h ij j
11jρ̂AB 0ð Þj00h ij j : (19)

In the plot of f tð Þ, the approximate Gaussian decay from Eq. (18)
is shown using a dashed red line, and deviations from this
approximate behavior are attributed to the terms neglected
from Eq. (17).

The Gaussian time dependence is a direct consequence of the
Gaussian distribution of energies {Eflip

~mp
} and the time-energy

Fourier dualism between 00jρ̂AB tð Þj11h i and {Eflip
~mp
} (see Subsection

II E). A Gaussian in the time domain implies a Gaussian transform
in the energy domain. Conversely, a Gaussian distribution in the
energy domain implies a Gaussian inverse transform in the time
domain.

Figure 3(b) provides an example of an environment for which
the distribution {Eflip

~mp
} deviates from a Gaussian form (upper

panel). Here, a larger �Eflip
~mp

leads to a larger �ω, although this does
not drive non-Gaussian time dependence in f tð Þ (see Subsection
III B). Higher-order terms neglected in Eq. (17) introduce compo-
nents which drive departures from a purely Gaussian time depen-
dence in the coherences of ρ̂AB tð Þ. Thus, more notable deviations
from the red Gaussian line appear in the corresponding plot of f tð Þ
in the lower panel of Fig. 3(b).

Henceforth, we refrain from calculating results using the fully
numerical model, since it is more computationally intensive than
the semi-analytic treatment. This is justified, since the lower panels
of Figs. 3(a) and 3(b) demonstrate exact agreement between the
numerical and semi-analytic models.

G. A time scale for disentanglement

Let the decay of non-zero coherences in Eq. (18) be mapped to
a Gaussian with standard deviation σ t , g tð Þ/ exp � t � t0ð Þ2=2σ2

t

� �
.

Then, for this decay, t0 ¼ 0 and σt ¼ 1=ωflip
RMS. Thus, the root

mean square double-bit-flip frequency characterizes the Gaussian

FIG. 3. As the distribution of double-bit-flip energies {E flip
~mp
} approaches a Gaussian distribution, the time dependence of the decay in coherences 00jρ̂ABj11h i ¼ 11jρ̂ABj00h i�

becomes more Gaussian. (a) A histogram of the energies {E flip
~mp
} (upper plot), which approaches an ideal Gaussian (dashed red line), corresponds to a highly Gaussian form in

the decay of coherences. (b) Deviations from a Gaussian distribution in energies {E flip
~mp
} introduce non-Gaussian behavior in the decay of f . In both cases shown, a ¼ 1 nm, the

environmental radii are RA=RB ¼ 4a=2a, and the environmental populations are N ¼ 20. It is discussed in the text that the energy offset �E
flip
~mp

= 0 does not drive the departure
from Gaussian time dynamics.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 084303 (2020); doi: 10.1063/1.5129175 127, 084303-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


decay of the coherences of ρ̂AB tð Þ. We define

τE ¼ π

ωflip
RMS

¼ π�h

Eflip
RMS

(20)

as a time scale for the dynamics of disentanglement. Here, the
factor of π is included to make τE directly comparable to τ, the
time scale from previous work.13

H. Measures of entanglement

To quantify entanglement between A and B, we use three cor-
relation functions: SBM, the Bell–Mermin (BM) correlation func-
tion;19 SCHSH, the Clauser–Horne–Shimony–Holt (CHSH)
correlation function;20 and SBPRV, the Brukner–Paunković–
Rudolph–Vedral (BPRV) correlation function.21 These are func-
tions of the two-qubit reduced density matrix ρ̂AB(t). The details of
our implementations of the correlation functions are discussed
either here or in the previous work by Blair et al.13

1. The Bell–Mermin correlation function

The Bell–Mermin correlation used here is formulated for two
qubits, A and B, measured independently with three measurement
settings,19 j [ 1, 2, 3f g corresponding to three rotated angles of
measurement θ j


 �
. The Bell–Mermin correlation function, SBM, is

SBM ¼ Tr ρ̂P̂same
� �

, (21)

where

P̂same ;
X3

i¼1,j=i

X1
m¼0

R̂ θið Þ mj i mh jR̂ �θið Þ � R̂ θ j
� �

mj i mh jR̂ �θ j
� �

,

and R θð Þ is a single-qubit rotation operator,

R θð Þ ¼ cos θ 0j i 0h j þ 1j i 1h jð Þ þ sin θ 0j i 1h j � 1j i 0h jð Þ:

SBM may be interpreted as the sum of the probabilities that a mea-
surement on each MCQ will yield the same result, 0 or 1, when
measured in dissimilar bases. A value of SBM � 1 is not possible for
a pair of particles described by purely classical statistics assuming
local realism, so this is designated the “Bell violation” regime. To
maximize the Bell violation of measurements on ρ̂AB tð Þ, we choose
θ1, θ2, θ3ð Þ ¼ 0, π=3, 2π=3ð Þ.

Applying the exact, semi-analytic ρ̂AB of Eq. (11) to Eq. (21),
we obtain

SBM tð Þ ¼ 9
8
� 3
8
1
2N
X
~mp

cos ω ~mp
� �

t
� �

:

The approximate ρ̂AB of Eq. (18) leads to

SBM tð Þ ≃ 9
8
� 3
8
e�ω2

RMSt
2=2:

The approximate form of SBM clearly highlights the initial and

asymptotic values of SBM tð Þ: SBM 0ð Þ ¼ 3=4 and SBM 1ð Þ ¼ 9=8:
Thus, the pair AB starts maximally entangled in the Bell violation
regime, and time evolution unravels this entanglement through
interaction and entanglement with E.

2. The Clauser–Horne–Shimony–Holt (CHSH) correlation
function

Similarly, the CHSH correlation function as implemented by
Blair et al.13 may be applied to the semi-analytic version of ρ̂AB tð Þ
of Eq. (11), with result

SCHSH tð Þ ¼
ffiffiffi
2

p
1þ 1

2N
X
~mp

cos ω ~mp
� �

t
� �������

������;
or the approximate ρ̂AB tð Þ of Eq. (18), leading to

SCHSH tð Þ ≃ ffiffiffi
2

p
1þ e�ω2

RMSt
2=2

��� ���:
Here, the Bell violation regime is SCHSH . 2. By this measure of
entanglement, the AB pair starts well within the Bell violation
region with SCHSH 0ð Þ ¼ 2

ffiffiffi
2

p
, but AB eventually crosses out to a

classically describable region with SCHSH 1ð Þ ¼ ffiffiffi
2

p
.

3. The Brukner–Paunković–Rudolph–Vedral (BPRV)
correlation function

Finally, the BPRV correlation is calculated for the exact ρ̂AB tð Þ
of Eq. (11) as

SBPRV tð Þ ¼ 6þ 3
2Nþ1

X
~mp

cos ω ~mp
� �

t
� �

: (22)

The approximate ρ̂AB tð Þ of Eq. (18) results in

SBPRV tð Þ ≃ 6þ 3
2
e�ω2

RMSt
2=2: (23)

The details of our SBPRV calculation are found in previous work.13

Here, the Bell violation regime is defined by SBPRV . 7. Initially
maximally entangled, AB has SBPRV 0ð Þ ¼ 15=2, and time evolution
brings AB out of the Bell violation regime to an asymptotic value
of SBPRV 1ð Þ ¼ 6.

III. RESULTS

A. Validation of τE as a time scale

Part of the motivation for this work was that τ ¼ ffiffiffiffiffiffiffiffiffi
τAτB

p
, a

previous disentanglement time scale13 used in the case where
RA ¼ RB did not generalize well to cases in which RA = RB. Here,
τA and τB are time scales for the decoherence of each single qubit
within its own local environment.22

The limitations of τ as a time scale for disentanglement are
illustrated in Fig. 4. Here, the local environments are populated
with M ¼ 5 DQDs each, and SBM for the target MCQ pair is
plotted for several randomized environments with different radial
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ratios, RA=RB. In particular, RA was fixed at RA ¼ 4a and RB [
{RA=2, RA, 2RA} was chosen with a ¼ 1 nm.

In subplot 4(a), SBM is plotted vs time in fs for several random
environments, and diverse environmental interaction strengths
drive disentanglement at diverse speeds. A small RB results in
strong B–E interactions (red-line cases) and drives the fastest disen-
tanglement, as SBM rapidly leaves the Bell violation region. On the
other hand, a large RB generally allows the target pair to retain
entanglement longer (green-line cases), up to the point where RB is
so large that environmental interactions are dominated by A–E
interactions, and changing RB no longer has a significant effect on
overall AB–E interactions.

When each time evolution from 4(a) is time-scaled to its own
particular τ, as in Fig. 4(b), the various time evolutions for the
RA ¼ RB case roughly overlay one another, having approximately
the same time-scaled form (see the blue plots). This is consistent
with previous work,13 which suggests that τ is an effective time
scale for characterizing disentanglement when RA ¼ RB. On the
other hand, the τ-scaled calculations of SBM with RA = RB do not
overlay the τ-scaled RA ¼ RB plots, indicating that τ is not as effec-
tive a time scale when RA = RB. For the RA = RB cases, τ overesti-
mates the time scale for disentanglement.

Figure 5 shows that τE of Eq. (20) is effective at capturing the
dynamics of disentanglement, even in cases where RA = RB. Here,
several time evolutions are calculated, each for a different random-
ized environment. In each case, we use a ¼ 1 nm, and RA ¼ 4a,
but RB is varied. For these time evolutions, Fig. 5(a) provides SBM,
SCHSH, and SBPRV plots against time in fs. As expected, a diverse
range of environmental interaction strengths leads to diverse plots
of the correlation functions with dynamics on different time scales.
When these plots are time-scaled to τE , as in Fig. 5(b), the

τE-scaled correlation function plots have a common form and
overlay one another for all RA=RB ratios shown, neglecting long-
time oscillations. Indeed, τE characterizes well the dynamics of
disentanglement.

B. Early-time Gaussian decay of coherences

Figure 6 shows the dynamics of the magnitudes of the coher-
ences 00jρ̂ABj11h i ¼ 11jρ̂ABj00h i* for four random environments.
The dynamics of the coherences are dominated by a Gaussian
decay in the early-time behavior, even for {Eflip

~mp
} distributions that

deviate from an ideal Gaussian distribution and cause notable
revivals in the magnitude of the coherences. To show this, a lineari-
zation technique is applied to the f tð Þ data. A Gaussian function
g tð Þ ¼ exp �t2=2σ2

t

� �
may be linearized to obtain

ln � ln gð Þ ¼ 2 ln t � ln 2σ2
t

� �
:

Therefore, a function f tð Þ may be characterized as Gaussian if a
plot of y ¼ ln � ln fð Þ vs x ¼ ln t has a slope of dy=dx ¼ þ2.
Four environments, {E1, E2, E3, E4}, were selected and character-
ized. Their {Eflip

~mp
} distributions are shown in Fig. 6(a), and the

linearization of each f tð Þ is plotted in 6(b). For each plot, a
blue line of slope þ2 (labeled “Gaussian”) is drawn through the
left-most data point. Since several subsequent linearized data
points fall on or very close to the Gaussian marker line, we say
that these time evolutions are highly Gaussian, especially at
early times.

Significant energy offsets �Eflip
~mp

= 0 do not disturb the
Gaussian decay of the coherences (see Fig. 3). This may be under-
stood from a Fourier perspective. Let some time-domain function,

FIG. 4. A disentanglement time scale, τ, characterizes the time scale of disentanglement when the two local environments interact with their individual target MCQ with
roughly the same strength (that is, when RA ¼ RB); however, τ does not generalize to cases where RA = RB. Here, a ¼ 1 nm, and global environmental population is
N ¼ 10 for three different cases: RA=RB [ 4a=2a, 4a=4a, 4a=8af g. (a) The BM correlation function, SBM, is plotted against time in fs for several time evolutions, and
each randomized environment drives a unique time evolution. (b) When SBM for each evolution is plotted against time scaled to its own τ, τ is only partially effective as a
time scale. It is most effective when RA ¼ RB (blue plots), mapping the various RA ¼ RB evolutions to roughly the same scaled time dependence. If τ also were an effec-
tive time scale for the RA = RB evolutions, the red and green plots would also overlay the blue plots. However, τ overestimates the time constant when RA = RB.
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x tð Þ, have a Fourier transform, X Eð Þ, with the Fourier pairing
denoted as x tð Þ $ X Eð Þ. A shift of E0 in the energy domain corre-
sponds to a complex phase factor in the time domain:
x tð ÞeiE0t $ X E � E0ð Þ. In this paper, the non-zero offset �Eflip

~mp
results

in a complex phase factor exp(�i�Eflip
~mp
t) for the coherences of ρ̂AB tð Þ.

However, this complex phase has no effect on the magnitude of the
coherences. Furthermore, it may be shown from the expansion of
Eq. (14) and the definitions of the correlation functions that the

FIG. 5. The time scale τE of Eq. (20) characterizes the dynamics of environmentally-driven disentanglement for various ratios RA=RB. Here, RA is kept constant, and RB

is varied with a ¼ 1 nm and N ¼ 20. (a) Correlation functions from Subsection II H are plotted against time in fs for several random environments, showing that varied
AB–E interaction strengths drive disentanglement over varied durations. (b) Each time evolution of (a) is time-scaled to its particular τE, resulting in a common time-scaled
form within each correlation function up to slight oscillations.

FIG. 6. Early-time behavior for both Gaussian and non-Gaussian {E flip
~mp
} distributions exhibits Gaussian decay in coherences at early times. For each of the random envi-

ronments with {E flip
~mp
} distributions plotted in (a), a linearization of the time dependence of the coherences is shown in (b). Data points that exhibit Gaussian decay fall on

the blue line of slope dy=dx ¼ 2, which marks a truly Gaussian dependence. For all environments represented in (a), early time points exhibit Gaussian decay. The time
dependence of f tð Þ is provided as an inset for each linearization panel. Here, environments with N ¼ 20 neighbors were used, with a ¼ 1 nm and RA=RB ¼ 4a=2a.
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energy offset �Eflip
~mp

has no effect on the correlation functions of
Subsection II H.

That a Gaussian structure holds in the limit of early times—
even for {Eflip

~mp
} distributions more complex than Gaussian—may be

understood in two ways. First, the short-time approximation of
Eq. (18) shows that any function with a non-zero intercept and no
linear component will appear to be Gaussian. Second, the Fourier
interpretation allows for any function with a Gaussian energy dis-
tribution {Eflip

~mp
} to appear as Gaussian, even with a non-zero offset

�Eflip
~mp
, as discussed above. Indeed, early-time Gaussian behavior aptly

describes f tð Þ for the approximately Gaussian and less-Gaussian
energy distributions of Fig. 6.

The behaviors seen here indicate a non-Markovian envi-
ronment, despite any departures from strictly Gaussian behavior
beyond the time scale of the Gaussian decay. Since a Markovian
environment is memoryless, system dynamics in response to the
environment should be devoid of points with special character-
istics, such as inflection points or local extrema. Instead, for a
Markovian environment, an exponential decay would be
expected. The dynamics seen here do not show an exponential
decay and, therefore, do not reflect any significant Markovian
character in the environment. Additionally, a Markovian envi-
ronment could drive neither the early-time Gaussian decay nor
the revivals in the magnitudes of the coherences at longer time
scales.

IV. DISCUSSION

We discuss why the previously used time scale, τ, is suitable
when RA ¼ RB but becomes less suitable when RA = RB.

The time scale τ was defined as the geometric mean of
time scales τA and τB,

13 which are time scales for decoherence
of a single MCQ, A or B, in environments EA and EB,
respectively,22

τ ¼ ffiffiffiffiffiffiffiffiffi
τAτB

p
: (24)

Each τX for X [ A, Bf g was defined as

τX ¼ π�h

E Xð Þ
RMS

, (25)

where E Xð Þ
RMS is the root mean square value of the single-bit-flip

energies {EX,j} in environment EX comprised of M randomly
oriented DQDs randomly placed on the surface of a shell of
radius RX from the target MCQ,

E Xð Þ
RMS ¼

1
2M
X2M�1

j¼0

EX ~mX,j
� �� �2 !1=2

: (26)

Here, EX ~mX,j
� �

is the single-bit-flip energy of the target MCQ
given environmental state ~mX,j

�� �
, labeled by the M-bit binary

word

~mX,j ¼ mMmM�1 � � �m2m1:

Additionally, for each state ~mX,j

�� �
, there is a complementary

state j~mX,�j

�
,

~mX,�j ¼ �mM �mM�1 � � � �mk � � � �m2 �m1

for which the label ~mX,�j is the bit-wise complement of ~mX,j,
and for which EX

�
~mX,�j

� ¼ �EX ~mX,j
� �

. Now, let us order
{EX
�
~mX,�j

�
} from most positive to most negative, and then

relabel this ordered set {εX,a}, where a is a counting number
smaller than 2M . It is now possible to write E Xð Þ

RMS of Eq. (26) in
terms of only the first 2M�1 energies {εX,a}, which are non-
negative by virtue of ordering,

E Xð Þ
RMS ¼

1

2(M�1)=2

X2M�1�1

a¼0

ε2X,a

 !1=2

: (27)

Then, τ ¼ ffiffiffiffiffiffiffiffiffi
τAτB

p
is found by combining Eqs. (24), (25), and

(27),

τ ¼ π�h2(M�1)=2

P2M�1�1
a¼0 ε2A,a

� 1=2 P2M�1�1
b¼0 ε2B,b

� 1=2� �1=2
: (28)

On the other hand, there are 22M double-bit-flip energies
{Eflip

~mp
} as defined in Eq. (13). These double-bit-flip energies can be

formed by adding and subtracting only the positive single bit flip
energies +εA,a to +εB,b, since A and B do not interact:
{Eflip

~mp
} ¼ {+εA,a + εB,b}. It can be shown that the RMS value of

these double-bit-flip energies is given by

Eflip
RMS ¼

1
2(M�1)=2

X2M�1�1

j¼0

ε2A,j þ ε2B,j

 !1=2

: (29)

Thus, by combining Eqs. (20) and (29), the time scale τE may be
written as

τE ¼ π�h2(M�1)=2

P2M�1�1
j¼0 ε2A,j þ ε2B,j

� 1=2 : (30)

Here, τE is written without any cross-terms, i.e., without
products εmA,aε

n
B,b. That the total energies of interest in τE are sums

of the non-negative energies εA,a and εB,b (and their powers)
reflects the fact that A and B do not interact. On the other
hand, cross-terms arise in the τ of Eq. (28). Only when εB,j ! εA,j
do the cross-terms vanish from τ. This is achieved approximately
in our global system when RA ¼ RB. In this case, we can take the
ratio of Eqs. (30) and (28) as τE=τ ! 1=

ffiffiffi
2

p
, and τ becomes

approximately proportional to τE . This proportionality between τ
and τE allows τ to function as a characteristic time constant for the
dynamics of disentanglement in the RA ¼ RB limit, as seen in pre-
vious work.13

On the other hand, when RA = RB, the proportionality
between τE and τ is lost, and τ fails as a characteristic time
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constant. This relationship is shown in the data of Fig. 7. Here, a
scatterplot is made for τE and τ data for various ratios of RA=RB

and several randomized environments for each ratio. When
RA ¼ RB, the points of the scatterplot fall close to the line
τE ¼ τ=

ffiffiffi
2

p
; but, when RA = RB, the data departs from that pro-

portionality. Mathematically, this is driven by the unphysical cross-
terms arising in the approximate time constant τ when RA = RB.

V. CONCLUSION

In this paper, the dynamics of the loss of entanglement are
studied in MCQs. Each qubit is immersed in its own local environ-
ment, modeled using a set of M neighboring DQDs. Tunneling
also is suppressed to eliminate dissipative effects and leave only
entanglement. The system–environment interactions drive the
gradual loss of entanglement between A and B. The loss of entan-
glement has a Gaussian form, especially at early times. This behav-
ior is not reproducible using Markovian models of memoryless
environments, which can yield only an exponential time depen-
dence; however, we have developed non-Markovian models, includ-
ing an exact semi-analytic model and an approximate Gaussian
model for the density operator of the target MCQ pair. The time
scale of this disentanglement is directly related to the strength of
the electrostatic interaction between the environment and the
target pair of qubits. This time scale, τE , describes this problem in a
more general way than does a previously developed time scale, τ.
The previously-developed time scale, τ, is useful in the case where
each local environment has an approximately equal strength of
interaction with its central target MCQ (the local environments
both have the same radius). The time scale developed here, τE , is
more general than τ since τE also characterizes systems where

environmental interactions are dominant for only one MCQ in the
target pair (the radius of the weaker environment is longer than
that of the dominant environment). The approximate Gaussian
model may be used to provide an accurate, non-Markovian descrip-
tion of system dynamics under the influence of a much broader
class of environments characterized by randomness. Models of dis-
entanglement and other quantum phenomena can help explore the
dynamics of MCQs and the role they can play in quantum infor-
mation processing under the influence of the environment.
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