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Mixed-valence molecules provide an implementation for a high-speed, energy-efficient paradigm for classical
computing known as quantum-dot cellular automata (QCA). The primitive device in QCA is a cell, a struc-
ture with multiple quantum dots and a few mobile charges. A single mixed-valence molecule can function as
a cell, with redox centers providing quantum dots. The charge configuration of a molecule encodes binary
information, and device switching occurs via intramolecular electron transfer between dots. Arrays of molec-
ular cells adsorbed onto a substrate form QCA logic. Individual cells in the array are coupled locally via
the electrostatic electric field. This device networking enables general-purpose computing. Here, a quantum
model of a two-dot molecule is built in which the two-state electronic system is coupled to the dominant
nuclear vibrational mode via a reorganization energy. This model is used to explore the effects of the elec-
tronic inter-dot tunneling (coupling) matrix element and the reorganization energy on device switching. A
semi-classical reduction of the model also is made to investigate the competition between field-driven device
switching and the electron-vibrational self-trapping. A strong electron-vibrational coupling (high reorgani-
zation energy) gives rise to self-trapping, which inhibits the molecule’s ability to switch. Nonetheless, there
remains an expansive area in the tunneling-reorganization phase space where molecules can support adequate
tunneling. Thus, the relationship between the tunneling matrix element and the reorganization energy affords
significant leeway in the design of molecules viable for QCA applications.

I. INTRODUCTION

Mixed-valence multi-center molecules are being in-
vestigated for use in an energy-efficient, high-speed,
general-purpose molecular computing paradigm known
as quantum-dot cellular automata (QCA).1–5 Here, a
molecule serves as a primitive device known as a cell,
from which more complex logic3,4,6—and indeed entire
processors7—may be designed. Metal centers within a
molecular cell provide redox centers, which function as
quantum dots. Mobile charges may localize on dots
within the molecule, and the configuration of mobile
charges can be used to encode classical bits. The inter-
dot quantum tunneling of charge enables device switch-
ing. QCA circuits, formed by adsorbing arrays of cells
onto a substrate, are interconnected using the local elec-
trostatic electric field. This field provides a bias to
drive electron transfer within a molecule. Molecules such
as diferrocenyl acetylene (DFA) and zwitterionic nido-
carborane (Fc+FcC2B9

−) are being investigated as can-
didates for this application.8,9 DFA provides two quan-
tum dots, forming the simplest type of QCA molecule.
Fc+FcC2B9

− provides a three-dot molecule and enables
the electric-field clocking of molecular QCA devices and
circuits.

Molecular QCA devices have not yet been experimen-
tally demonstrated, neither at the cellular level nor at
the circuit level, and molecular properties that will opti-
mize device operation remain unknown. While the pro-
cesses of synthesis, imaging, and testing of concept QCA
molecules are costly and time-consuming, insights may be
gained quickly and inexpensively from predictive models
of molecular QCA performance. Here, a model is devel-
oped to investigate two important features in a DFA-like

molecular QCA candidate: its ability to support strong
bits, and its ability to switch states. These are explored
in terms of the electron transfer matrix element HAB for
charge tunneling between electronic states, and the re-
organization energy λ coupling the molecule’s electronic
state to its own nuclear displacements. Low HAB tends
to localize the electronic state, leading to stronger bit
values; and high HAB enables electronic delocalization,
leading to weaker bit values. Low λ decouples the elec-
tronic state from the vibrational state of the molecule,
but high λ couples them and tends to localize the elec-
tron. Indeed, λ can become so strong that electron trans-
fer is inhibited by the electron-vibrational self-trapping.
This can preclude device switching, an important func-
tion in QCA logic. We show that there is a significant re-
gion in the (λ,HAB) phase space over which self-trapping
does not inhibit molecular device switching.

The investigation begins in Sect. II with a fully-
quantum model for a QCA molecule’s electronic state and
the dominant molecular vibrational state. The quantum
model also is reduced to a semi-classical model, which
enables the exploration of the impact that self-trapping
has on device switching. The fully-quantum model of
Sect. III yields results consistent with those of a semi-
classical model by Lu and Lent11. The semi-classical re-
duction of the fully-quantum model also demonstrates
that the (λ,HAB) phase space has a significant area
over which the self-trapping does not inhibit switching
in QCA molecules.
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II. MODEL

A. Electronic Subsystem

A DFA-like QCA molecule has two quantum dots sepa-
rated by distance a, and the charge configuration is mod-
eled as a two-state electronic system. The localized elec-
tronic states (depicted in Fig. 1) provide a basis for the
electronic system.
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FIG. 1. Schematic representation of the localized electronic
states {|0〉 , |1〉} of a two-dot QCA molecule. These states pro-
vide a basis for the electronic subsystem. Each black circle
represents a quantum dot. The black line represents an elec-
tronic tunneling path between the interconnected dots. The
red circle represents a mobile electron. The dots are sepa-
rated by a distance a. A cell can have polarization P = ±1.
Not pictured here is the molecule’s fixed neutralizing charge.

The electronic system’s Hamiltonian, Ĥe, has the fol-
lowing form:

Ĥe = −HABσ̂x +
∆

2
σ̂z. (1)

Here, HAB is the electronic coupling or the hopping en-
ergy between the |0〉 and |1〉 states, and ∆ is the detuning
between the |1〉 and |0〉 states:

∆ = 〈1| Ĥe |1〉 − 〈0| Ĥe |0〉 . (2)

∆ is determined by electrostatic interactions with neigh-
boring cells. The operators σ̂x and σ̂z are two of the
Pauli operators He:

σ̂x = |0〉 〈1|+ |1〉 〈0| ,
σ̂y = i (|0〉 〈1| − |1〉 〈0|) , and

σ̂z = − |0〉 〈0|+ |1〉 〈1| .
(3)

An energy useful in characterizing the system is the
kink energy, Ek. Ek is the cost of a bit flip. This can
be quantified as the magnitude of ∆ when Pdrv = ±1.
Therefore, if Pdrv = ±1, Ek = 420 meV.

We define a polarization, P , which quantifies the elec-
tronic configuration of a cell. P , the expectation value of
σ̂z, may vary continuously over the interval [−1, 1]:

P = 〈σ̂z〉 = Tr(σ̂z ρ̂e). (4)

Here, ρ̂e is the density operator for the electronic subsys-
tem.

B. Vibrational Subsystem

The vibrational subsystem is modeled using a quan-
tum harmonic oscillator. The oscillator’s position, Q,
represents the reaction coordinate for the dominant vi-
brational mode of the molecule, assumed to be the anti-
symmetric breathing mode. The Hamiltonian for this
system, Ĥv, is given by

Ĥv = ~ω
(
â†QâQ +

1

2

)
=
P̂ 2
Q

2m
+

1

2
mω2Q̂2, (5)

where, âQ and â†Q are the annihilation and creation oper-
ators, respectively, for a vibron, a quantum of intramolec-
ular vibration. Also, m denotes the oscillator’s effective
mass, and ω represents its angular frequency of oscil-
lation. Eqn. (5) also expresses Ĥv in terms of the vi-

brational system’s momentum operator P̂Q and position

operator Q̂:

P̂Q = i

√
mω~

2

(
âQ − â†Q

)
, and (6)

Q̂ =

√
~

2mω

(
âQ + â†Q

)
(7)

Here, the term P̂ 2
Q/2m is the subsystem’s kinetic energy

operator, and mω2Q̂2/2 is its potential energy operator.

C. A Fully-quantum Treatment of the Composite
Electron-Vibration System

The Holstein molecular-crystal model10 is used to treat
the coupled electron+vibration system, with coupling
term Ĥev, linear in both σ̂z and Q̂:

Ĥev =
gev
2
σ̂zQ̂. (8)

The electron-vibration coupling coefficient gev is related
to the reorganization energy λ by

gev =
√

2mω2λ. (9)

This model is depicted schematically in Fig. 2. Here,
neighboring molecules (represented as “external drivers”
in the figure) establish an electrostatic electric field,
which determines a potential—and thus the value of
∆—for the electronic system. The electronic system,
then, is coupled via Ĥev to the vibrational system.

The complete Hamiltonian for the electron+vibration
system is the sum of the electronic Hamiltonian, the vi-
brational Hamiltonian, and the coupling:

H = −HABσ̂x +
∆

2
σ̂z +

P̂ 2
Q

2m
+

1

2
mω2Q̂2 +

gev
2
σ̂zQ̂. (10)
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FIG. 2. An electric-field-driven QCA molecule is modeled
using an electronic system coupled to the dominant vibra-
tional mode of the molecule’s nuclear coordinates. The “ex-
ternal drivers” component represents the influence neighbor-
ing molecules have on the target molecule’s electronic state
via the electrostatic electric field.

D. A Semi-classical Reduction of the Fully-quantum
System

It will be useful to consider a semi-classical reduction
of the Eqn. (10). In this limit, the vibrational kinetic
energy is ignored, and the vibrational position opera-
tor Q̂ is treated classically as a scalar value Q. Thus,
the Hamiltonian of Eqn. (10) reduces to a semi-classical

Hamiltonian Ĥ(sc):

Ĥ(sc) = −HABσ̂x +
∆

2
σ̂z +

1

2
mω2Q2 +

gev
2
σ̂zQ. (11)

This model will the enable the exploration of the com-
petition between field-driven device switching and the
self-trapping of mobile charge on a particular quantum
dot due to strong electron-vibron coupling.

III. RESULTS

Fig. 3 shows the cell-cell response curve, which is the
response of a target cell to a driver cell. Here, the target
cell polarization P is calculated from the cell’s ground
state given driver polarization Pdrv and the Hamiltonian
of Eqn. (10). The non-linear response is a signal gain, in
which a weak Pdrv results in a strong P . This effect is
quantified using β, the steepness of the curve at center
of the graph:

β ≡ − dP

dPdrv

∣∣∣∣
Pdrv=0

. (12)

The cell-cell response curve is shown for various values of
the electronic coupling HAB . Low values of HAB lead to
high electronic localization and a desirably high β with a
strong polarization response in the target cell for a given
Pdrv. The numerical results shown here are consistent
with previous analytic results by Lu and Lent.11 While
the work of Lu and Lent was based on the semi-classical

model described by Ĥ(sc), the results shown here are from
the fully-quantum model described by Ĥ of Eqn. (10).
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FIG. 3. The polarization response P of a target cell to a
driver input Pdrv is calculated by finding the ground state
for Hamiltonian Ĥ for different values of electronic coupling
HAB . Increasing HAB facilitates electron transfer and de-
localization, but lower HAB provides for better signal gain
(higher β) and a stronger signal strength |P |. Here, parame-
ters inspired by those of the DFA molecule were used: a = 1
nm, m = 6 amu, f = 300 cm−1, and λ = 100 meV.

Increasing λ provides another means to increase sig-
nal gain and electronic localization, resulting in higher
β and P values. This effect is shown in Fig. 4. When
the electron is decoupled from the molecular vibrations
(λ = 0), the resulting cell-cell polarization curve (blue
line in Fig. 4) matches the cell-cell response when the
vibrational subsystem is not considered (compare to the
HAB = 50 meV, shown in the yellow curve of Fig. (3).
On the other hand, strong electron-vibration coupling
(λ = 400 meV) gives to charge self-trapping on the dots,
resulting in greater electronic localization and a stronger
polarization magnitude |P | for a given Pdrv.

Fig. 5 highlights the competition between field-
driven electronic switching and electron-vibrational self-
trapping. The electric field due to the driver is varied
by changing the electronic configuration of the driver
molecule, but Q is fixed at a particular value Q = Qo,
with Qo defined as

Qo =
gev

2mω2
. (13)

Here, the semi-classical Ĥ(sc) is used to calculate P as a
function of Pdrv, and this is repeated for various values
of the reorganization energy λ. For low reorganization
energy, the impact of this is minimal: the cell-cell po-
larization response demonstrates that both positive and
negative output polarizations are possible over the full in-
put domain −1 ≤ Pdrv ≤ +1. For a larger value of λ, the
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FIG. 4. Increasing λ enhances the cell’s polarization response
by creating a sharper transition in P (Pdrv). Here, DFA-like
calculation parameters were used: a = 1 nm, m = 6 amu,
f = 300 cm−1, and HAB = 50 meV.

competing vibrational coordinate has a significant im-
pact: the electron-vibration coupling is significant, self-
trapping dominates, and the electric field from the driver
molecule no longer is sufficient to switch the state of the
target device. When λ = 400 meV, P (Pdrv) > 0 for most
of the domain. Even in the extreme upper input domain
(Pdrv → +1), P attains only a slightly negative value.
When λ = 500 meV, it is impossible over the valid in-
put domain Pdrv ∈ [−1, 1] to drive a “0” bit (P < 0)
on the target cell. The target cell is stuck in the “1”
state (P > 1), a condition undesirable in molecular QCA
devices.

Finally, the ability of the electronic system to switch is
quantified by evaluating the change in output P over the
two extreme values of the input Pdrv, given vibrational
coordinate Q = Qo. We define the measure ∆P

∆P =
1

2
(P+ − P−) , (14)

where P+ is the target cell response for Pdrv = −1, and
P− is the target cell response to Pdrv = +1. Thus, ∆P =
0 represents the extreme case of a cell unable to switch
its electronic state, and a cell fully capable of switching
has ∆P = 1. Even ∆P ∼ 0.5 is undesirable in a cell, for
such a cell with P+ ∼ 1 will have P− ∼ 0. ∆P ≥∼ 0.8 is
more desirable, as a cell with P+ ∼ 1 could be driven to
P− ∼ −0.6.

A plot of ∆P as a function of λ and HAB is given
in Fig. 6. Since in QCA operation, it is desirable for
∆ � HAB , we consider 0 ≤ HAB ≤ 0.3Ek. The color
gradient encodes the value of ∆P at each point (blue:
∆P → 0; yellow: ∆P → 1). This data demonstrates
that there is a significant region within the phase space
(λ,HAB) in which the cell has an acceptable switching
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FIG. 5. High nuclear reorganization energy λ leads to self-
trapping, which inhibits device switching. Polarization P is
calculated for a cell with fixed vibrational coordinate Q = Qo

in the semi-classical model for various values of λ. At low
λ, the target cell’s electronic state switches readily between
P < 0 and P > 0 over the range of valid driver inputs,
Pdrv ∈ [−1, 1]. As λ increases, the nuclear coordinates are
coupled more strongly to the electronic state, self-trapping
becomes significant, and electronic switching in the molecule
is degraded. Here, HAB = 0.15 eV, a = 1 nm, m = 6 amu,
and f = 300 cm−1.

response. Here, field-driven electron transfer is largely
unimpeded by self-trapping effects due to the vibrational
coordinate Q = Qo. A large continent of ∆P ≥∼ 0.8
(yellow region) extends from the origin of the plot upward
(for increasing HAB) and rightward (for increasing λ).

IV. CONCLUSION

Here, a fully-quantum model was developed for the
electron+vibration configuration of a DFA-like, two-dot
QCA molecule. The model reflects that decreasing HAB

or increasing λ provides for stronger device polarizations.
A semi-classical reduction was made from the quantum
model by ignoring nuclear kinetic energy and treating
the reaction coordinate as a scalar value rather than a
quantum mechanical operator. This reduction enables
the modeling the effect of vibration-charge self-trapping
on field-driven QCA device switching. Here, increasing λ
more strongly couples the electronic state and the nu-
clear coordinates and may lead to the suppression of
electronic tunneling (device switching) by self-trapping.
Nonetheless, model showed that there is substantial free-
dom within the design phase space for QCA molecules to
choose molecular parameters λ and HAB and still expect
adequate device switching.

Models such as the one presented here can play an
important role in the realization of molecular QCA de-



5

∆
P

H
A
B
/
E

k

λ/Ek

FIG. 6. ∆P quantifies the ability of a cell to switch states.
Here, the reduced, semi-classical model is used, and a frozen
nuclear coordinate Q = Qo is assumed. For low reorganiza-
tion energy λ, the coupling between the electronic state and
reaction coordinate is weak such that electronic switching be-
tween the ”0” state (|1〉 or P = +1) and the “1” state (|0〉
or P = −1) is largely unaffected: ∆P ' 1. As λ grows,
however, the fixed nuclear coordinates have a more signifi-
cant effect on the molecule’s electronic state, and switching
is impeded (∆P → 0). Nonetheless, there remains a large
yellow region of the (λ,HAB) phase space considered here in
which a molecule switches well (∆P ≥ 0.8). Here, a = 1 nm,
m = 6 amu, and f = 300 cm−1.

vices. Taking a concept molecule from design to synthe-
sis, imaging, and testing is a high-latency, labor-intensive
process of several personnel-years. On the other hand,
models can highlight in a very quick and inexpensive
manner those sets of molecular QCA properties which
support effective device operation. This can accelerate
the realization of molecular QCA devices by providing
guidance in the design of QCA molecules, as well as al-
lowing the community of researchers to avoid synthesiz-
ing unoptimized molecules.

This work is part of a larger effort to realize energy-
efficient, high-speed molecular computation using molec-
ular QCA. Some models already developed indicate
the DFA-like molecules can support THz-speed de-
vice switching,12 and that environmentally-driven quan-
tum decoherence makes molecular QCA bits robust.13,14

Other models are under development, especially models

of power dissipation from QCA devices and circuits to
the environment.
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