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Quantum-dot cellular automata is a paradigm for classical computing which departs from the

transistor paradigm and provides a system in which quantum phenomena may be studied. Here, the

elementary computing device is a cell, a structure having multiple quantum dots and a few mobile

charges. A specific operator-sum representation is developed for an exactly modeled double-dot,

molecular cell within an environment of N similar neighboring molecules. While an operator-sum

representation is not unique, a specific model can be determined by selecting a particular environ-

mental basis. We select the environment’s computational basis and calculate the specific and full

set of 2N Kraus operators, which match exactly previous models of quantum decoherence in this

system. Finally, the timescale for environmental interaction is characterized, enabling the reduction

of the large set of Kraus operators to an approximate pair of Kraus operators, exact in the limit of

large N. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993450]

I. INTRODUCTION

Driven by system-environment interactions, quantum

decoherence is a ubiquitous and powerful phenomenon. The

loss of quantum coherence from systems plays an important

role in the emergence of the classical world from the quan-

tum substrate.1 Disruptive in quantum computing systems,

decoherence has been found to stabilize bits in molecular

devices2 within a general-purpose, classical computing para-

digm known as quantum-dot cellular automata (QCA).3,4

Designed for low-power, energy-efficient computing

beyond the transistor era, QCA provide an illuminating frame-

work for the exploration of quantum mechanical phenomena.

Here, we focus on quantum decoherence in molecular QCA.

Section II provides a brief description of quantum-dot cellular

automata, along with a discussion of the operator-sum repre-

sentation. Section III describes models for a target double-dot

molecule (the open quantum system of interest) in the center

of an environment comprised of several similar molecules.

First, an exact model is outlined for the unitary evolution of

both the target molecule and environment treated explicitly as

one composite system. A reduced density operator is traced

out for a description of the target molecule. This was devel-

oped into a reduced but exact expression for time dynamics of

the coherence vector for the target system only.2 Next, we cal-

culate for the same system a particular equivalent set of Kraus

operators to obtain a reduced-dynamics operator-sum equation

for the target molecule’s reduced density matrix. This set of

operators is very large: there is one Kraus operator for each of

the numerous environmental degrees of freedom. Section IV

shows the exact agreement between the operator-sum model

and the direct coherence vector calculation. In the limit where

the environmental effects dominate the system’s internal

dynamics, the principal system’s coherence has a Gaussian

decay. From the data shown, a direct relationship is found

between the strength of the environmental interaction and the

timescale of the Gaussian decay. This leads to a pair of Kraus

operators, which approximate the full set in the limit of large

environment population N.

II. BACKGROUND

A. Quantum-dot cellular automata (QCA)

In QCA, the elementary device is a system of quantum

dots called a “cell.” The configuration of mobile charge on

the cell encodes a classical bit, and the intracellular, inter-

dot quantum tunneling of the mobile charge enables device

switching. Neighboring cells interact via the Coulomb field,

enabling general-purpose computing. Specific arrangements

of cells can function as QCA logic circuits.3–5

QCA may be implemented in several ways.

Photolithography was used to fabricate the earliest cells with

metal islands providing quantum dots on an insulating sur-

face.6–13 QCA cells also have been fabricated with semiconduc-

tor dots.14,15 Arrangements of cells have been “written” on

silicon surfaces using a scanning-tunneling microscope tip.16

QCA also may be implemented using mixed-valence molecules,

in which molecules function as cells and redox centers on a mol-

ecule provide dots.17–20 QCA molecules offer advantages such

as synthetic regularity between cells, ultra-high device densities,

room-temperature operation, and high operating speeds limited

by pico-second-or-faster electron transfer times. The molecular

implementation is the focus here. In this implementation, a mol-

ecule typically functions as a cell, so the terms “molecule” and

“cell” are used interchangeably throughout this discussion.

B. The operator-sum representation

The operator-sum representation is a method for model-

ing non-unitary effects of an external system E on the densitya)Electronic mail: Enrique_Blair@baylor.edu
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matrix q̂S of a principal open quantum system S (E usually

is a measurement apparatus or the environment).21 An

operator-sum representation avoids the explicit treatment of

the degrees of freedom of E, transforming q̂S using a set of

Kraus operators which act only on the Hilbert space of S.

These Kraus operators, then, must contain information about

E and its impact on the open system S. The operator-sum

representation is useful when the details of E are not fully

known, or when E is large and it is undesirable to model its

degrees of freedom. Such methods that avoid an explicit

treatment of E are referred to as “reduced dynamics” models.

Among reduced dynamics models, the operator-sum

representation is very general. For example, the Lindblad

equation assumes that E is Markovian or memoryless,22

restricting the set of behaviors a Lindblad-based model can

capture. The operator-sum representation, however, can

model the effects of a non-Markovian E on S.

The operator-sum representation was chosen for this

study because previous work revealed dynamics in the sys-

tem of interest reflective of a non-Markovian environment.2

Starting with the quantum Liouville equation, Appendix A

provides a derivation of the operator-sum representation, as

well as an outline of the calculation of the individual Kraus

operators which specify the operator-sum representation for

this system.

III. MODELS

A. Full system 1 environment model

The system of interest, S, is a double-dot molecule with

two quantum dots separated by distance a. One mobile elec-

tron may tunnel between the dots with hopping energy cS .

The dots are treated as point charges, and the fully localized

electronic states B ¼ fj0Si; j1Sig are shown in Fig. 1. Not

pictured here is the fixed, neutralizing charge, which is built

into the model to reflect the fact that the molecules have a

net zero charge. This neutralizing charge is located on and

split evenly between the pair of quantum dots.

The Hamiltonian ĤS for the unperturbed target mole-

cule S is given by

ĤS ¼ �cSr̂1 :

Here, ĤS is proportional to r̂1, the first of the Pauli

matrices

r̂1 ¼ j0Sih1Sj þ j1Sih0Sj
r̂2 ¼ iðj0Sih1Sj � j1Sih0SjÞ
r̂3 ¼ �j0Sih0Sj þ j1Sih1Sj :

To provide environmental quantum degrees of freedom

with which the system S can entangle, an environment E
comprised of N molecules similar to the target molecule S is

established. The molecules of E are placed randomly on the

surface of a sphere of radius R centered on the target mole-

cule. Additionally, the orientations of the environmental

molecules are randomized, as shown in Fig. 2. It should be

noted that the environmental molecules do not provide

molecular logic but simply provide quantum degrees of free-

dom with which the target cell can entangle.

A convenient basis for the environment is the computa-

tional basis for N two-state molecules

j~mpi ¼ jmNmN�1 � � �m2m1i
� jmNijmN�1i � � � jm2ijm1i ; (1)

where mk 2 {0, 1}, with the positive integer k labeling an

environment cell. Here, fj0ki; j1kig are the localized elec-

tronic states of the kth cell. Thus, ~mp is an N-bit binary word,

FIG. 1. Localized electronic states of the target molecular system. The elec-

tronic configuration of mobile charge on a mixed-valence molecule is shown

here with one mobile electron (red disc) and two redox centers functioning

as quantum dots (black circles). A tunneling path is denoted by a line con-

necting the two dots. The two localized electronic states are labeled j0Si and

j1Si and form the computational basis for the system. The electronic config-

uration is quantified using a polarization PS 2 ½�1; 1�.

FIG. 2. A target cell with a simple environment. Here, a target QCA mole-

cule is at the center of an environmental sphere comprised of N¼ 8 environ-

mental molecules. All molecules are modeled as two quantum dots

separated by a distance a¼ 1 nm. Two purple spheres represent the quantum

dots of the target molecule, and gray spheres represent the quantum dots of

environmental molecules. Paired dots are connected by a dark-gray bar, indi-

cating a tunneling path. The environmental shell has a radius R¼ 2.25a.
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and the non-negative integer p 2 f0; 1; 2;…;NE � 1g
indexes one of the NE ¼ 2N environmental basis states.

The set of states fj~mqi ¼ j~mpijm0ig form a global com-

putational basis set for the systemþ environment composite

system. Here, m0 2 f0S; 1Sg is a label for a basis state

of S. Also, ~mq is the ðN þ 1Þ-bit binary word ~mpm0 ¼ mN

mN�1 � � �m2m1m0, and q 2 f0; 1;…; 2NE � 1g is a non-

negative integer indexing the global basis states.

We write the global Hamiltonian as

Ĥ ¼ ĤS þ ĤE þ ĤSE : (2)

The second term, ĤE , includes all the Coulomb energy of

interaction between all environmental cells as well as hop-

ping energies for each cell in E. The third term, ĤSE , is a

diagonal matrix in the computational basis, in which each

element h~mqjĤSEj~mqi is the Coulomb energy of interaction

between the system in state jm0i and the environment in state

j~mpi.
Most generally, the coherent evolution of the global sys-

tem is described in density matrix formalism by the quantum

Liouville equation

d

dt
q̂ ¼ � i

�h
Ĥ ; q̂
� �

; (3)

with solution

q̂ðtÞ ¼ ÛðtÞq̂ð0ÞÛ†ðtÞ : (4)

Here, q̂ðtÞ is the time-dependent global density matrix with

initial state q̂ð0Þ, and ÛðtÞ is the time evolution operator

Û tð Þ ¼ exp � i

�h
Ĥt

� �
: (5)

A reduced density matrix q̂ðrÞS ðtÞ for the system of inter-

est S may be found by tracing q̂ðtÞ over the environmental

degrees of freedom

q̂ðrÞS ðtÞ ¼ TrE q̂ðtÞ �
X

jE

hjEjq̂ðtÞjjEi : (6)

Here, fjjEig is any orthonormal basis for the environment E.

We henceforth omit the superscript (r) denoting a reduced

density matrix.

Because S is a two-state system, the real degrees of free-

dom of q̂S are captured in the components of a three-element

coherence vector~k
S ¼ ðkS1 ; kS2 ; kS3 Þ

q̂S ¼
1

2
ÎþkS1

0 1

1 0

" #
þkS2

0 1

�i 0

" #
þkS3

1 0

0 �1

" # !

¼ 1

2
ÎþkS1 r̂1þkS2 r̂2þkS3 r̂3

� �
: (7)

Here, r̂1; r̂2, and r̂3 are the Pauli matrices. The components

of~k
S

are given by

kSa ¼ Trðr̂aq̂SÞ ; a 2 f1; 2; 3g: (8)

The length of the coherence vector, j~kSj, is a measure of

coherence. A coherence vector of unit length is fully coher-

ent, whereas coherence vectors of decreasing length have

increasing decoherence.23

For the two-dot molecules in this model, a classical bit

is encoded in the sign of the polarization P, which is the

expectation value of r̂3, or, equivalently, the value of k3

P ¼ hr̂3i ¼ k3 : (9)

To prevent dissipative effects from complicating the

model dynamics, the transfer of energy between S and E is

eliminated by fixing the charge configuration of the cells in

E. This is achieved by setting the tunneling energy for the

environment cells equal to zero (cE ¼ 0). We refer to this as

the non-dissipative limit.

B. A reduced calculation of target cell dynamics in the
non-dissipative limit

Within the non-dissipative limit, an exact, semi-analytic

reduced model for target cell dynamics was obtained without

numerically evaluating Eqs. (4) and (6). In this reduced

model, the time evolution of the target cell’s coherence vec-

tor from initial state ~k
Sð0Þ ¼ ðkS1 ð0Þ; k

S
2 ð0Þ; k

S
3 ð0ÞÞ is given

by

kS1 tð Þ ¼ kS1 0ð Þ
NE

XNE�1

p¼0

4c2
S þ Eflip

~mp

� �2

cos
�~mp

�h
t

� �
�2
~mp

;

kS2 tð Þ ¼ kS2 0ð Þ
NE

XNE�1

p¼0

cos
�~mp

�h
t

� �

þ kS3 0ð Þ
NE

XNE�1

p¼0

2cS
�~mp

sin
�~mp

�h
t

� �
; and

kS3 tð Þ ¼ � kS2 0ð Þ
NE

XNE�1

p¼0

2cS
�~mp

sin
�~mp

�h
t

� �

þ kS3 0ð Þ
NE

XNE�1

p¼0

4c2
S cos

�~mp

�h
t

� �
þ Eflip

~mp

� �2

�2
~mp

; (10)

where

�~mp
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2
S þ ðE

flip
~mp
Þ2

q
: (11)

Here, Eflip
~mp

is the detuning between the j0Si and j1Si states

given a particular environment state j~mpi, or equivalently,

Eflip
~mp

is the energy of a bit flip in the target cell from j0Si to

j1Si when the environment is in state j~mpi:

Eflip
~mp
¼ h~mp1SjĤ j~mp1Si � h~mp0SjĤ j~mp0Si : (12)

The internal dynamics of S are captured by cS , and decoher-

ence is driven by environmental interaction, captured in the

set of bit flip energies Eflip
~mp

. The model of Eq. (10) was shown

to be equivalent to the full, explicit model of Sec. III A in the

non-dissipative limit.2
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C. An operator-sum model for non-dissipative target
cell dynamics

An operator-sum model was derived without approxima-

tion from the full, explicit treatment of the S þ E composite

system (see Sec. III A) in the non-dissipative limit. The equa-

tion for an operator-sum representation is

q̂SðtÞ ¼
XNE�1

p¼0

K̂~mp
ðtÞq̂Sð0ÞK̂

†

~mp
ðtÞ; (13)

in which the effects of the environment are modeled by the

NE Kraus operators fK̂~mp
ðtÞg, each of which acts on the

Hilbert space of S. For this model, the pth Kraus operator is

given by

K̂~mp
tð Þ ¼ 1

�~mp

1ffiffiffiffiffiffi
NE
p �~mp

cos
�~mp

t

2�h

� �
Î

�

þi sin
�~mp

t

2�h

� �
2cSr̂1 þ Eflip

~mp
r̂3

� ��
: (14)

Appendix A provides an outline of the derivation of this

result.

To focus on decoherence alone, we consider the limit in

which environmental interaction dominates the internal

dynamics of S ðcS ! 0Þ. In this case, �~mp
reduces to jEflip

~mp
j,

and the time-dependent target cell coherence vector of Eq.

(10) reduces to

kS1 ðtÞ ¼ kS1 ð0Þf ðtÞ;

kS2 ðtÞ ¼ kS2 ð0Þf ðtÞ; and

kS3 ðtÞ ¼ kS3 ð0Þ;

(15)

where

f tð Þ ¼ 1

NE

XNE�1

p¼0

cos
jEflip

~mp
j

�h
t

 !
: (16)

Also, the pth Kraus operator of Eq. (14) reduces to

K̂~mp
tð Þ ¼ 1ffiffiffiffiffiffi

NE
p cos

jEflip
~mp
jt

2�h

 !
Îþi

Eflip
~mp

jEflip
~mp
j
sin
jEflip

~mp
jt

2�h

 !
r̂3

0
@

1
A :

(17)

IV. RESULTS

The results of the reduced dynamics models from Sec.

III—all within the non-dissipative limit (cE ¼ 0)—are pre-

sented here. Section IV A shows the operator-sum represen-

tation equivalent to the direct coherence vector calculation in

the general case of decoherence and significant internal sys-

tem dynamics (cS 6¼ 0). Then, in Sec. IV B, the operator-sum

model is shown to drive a Gaussian decoherence in S when

the internal dynamics of S are dominated by environmental

decoherence (cS ! 0). The timescale for this Gaussian deco-

herence is related directly to the strength of the environmen-

tal interaction. Finally, in Sec. IV C, the full set of Kraus

operators is reduced to a pair of Kraus operators in the limit

of cS ! 0. This reduction yields an approximate model,

which becomes exact in the limit N!1.

A. Operator-sum representation: Decoherence with
system internal dynamics

The operator-sum model agrees exactly with direct coher-

ence vector calculation of Eq. (10), which was shown to agree

exactly with the full model of Sec. III A in the non-dissipative

limit.2 Figure 3 shows the agreement between these two

reduced models. Shown here is an example of the more general

case in which dynamics internal to the target molecule S are

significant relative to the environmentally driven decoherence

(cS 6¼ 0). Thus, a suitable timescale here is the Rabi oscillation

period s ¼ p�h=cS of the unperturbed target molecule.

Figure 4 shows the evolution of coherence for the same

calculation as measured by the length j~kSðtÞj of the coher-

ence vector ~k
SðtÞ. The j~kSðtÞj calculation is performed for

the same time evolution as shown in Fig. 3. Two competing

effects are observed here: environmentally driven decoher-

ence reduces j~kSðtÞj from its initial value, but dynamics

internal to the target cell S cause coherent oscillations in

~k
SðtÞ, and thus in j~kSðtÞj.2

B. Operator-sum representation: Decoherence
dominates system internal dynamics

Next, we restrict the problem to the limit in which the

internal cellular dynamics of S are dominated by environ-

mentally driven decoherence (cS ! 0). In this limit, the tar-

get cell’s polarization PðtÞ ¼ kS3 ðtÞ is fixed because the inter-

dot tunneling of charge within S is suppressed. Thus, the

decay in j~kSðtÞj is due entirely to kS1 ðtÞ and kS2 ðtÞ, which

FIG. 3. Exactly the same time dependence is calculated for the target cell’s

coherence vector~k using two distinct methods: (a) the direct~k
SðtÞ calcula-

tion of Eq. (10), and (b) the full operator-sum model of the target cell’s time

evolution given by Eqs. (13) and (14). Here, cells with a¼ 1 nm are used.

The target cell has hopping energy cS ¼ 100 meV. The environmental shell

has a population of N¼ 18 molecules and a radius of R¼ 1.75a.
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depend on f(t) per Eq. (15). A plot of~k
SðtÞ is given in Fig. 5.

Here, the timescale sE is chosen as

sE ¼
p�h

Eo
; (18)

where Eo is the root-mean-square value of the detuning

energy Eflip
~mp

over all environmental basis states j~mpi.
For the evolution of Fig. 5, the loss of system coherence

as quantified by j~kSðtÞj is shown in Fig. 6. Since the value of

kS3 ðtÞ is fixed at kS3 ð0Þ, this establishes a hard minimum value

for coherence: j~kSðtÞj � jkS3 ð0Þj. The loss of coherence here

is driven by the environmental interaction, which dominates

any coherent oscillations in ~k
SðtÞ. The absolute value jf j of

the f(t) given in Eq. (16) determines the decay in coherence,

which is Gaussian in the early time limit. Appendix B

describes a linearization technique used to demonstrate the

Gaussian form of jf ðtÞj.
The Gaussian time dependence of jf ðtÞj —and thus, of

j~kSðtÞj also—is consistent with the illuminating result of

Zurek, et al., for quantum decoherence in a spin system sur-

rounded by an environment of neighboring spin systems.24

In both cases, a Markovian model for the environment would

be insufficient to capture this time-dependence. Our work is

novel in that the interaction of the target system with its

environment is calculated for an explicitly modeled environ-

ment and that the emphasis here is on finding operator-sum

models of decoherence.

The energy Eo is a particularly effective measure of the

strength of the environmental interaction because it predicts

the timescale for Gaussian decoherence. The standard devia-

tion rt of f(t) is inversely proportional to the environmental

interaction strength Eo

rt ¼
�h

Eo
: (19)

Figure 7 demonstrates the inverse relationship between

Eo and rt. Here, rt is calculated from the early time behavior

of f(t), as discussed in Appendix B. On the other hand, Eo is

calculated directly from the Coulomb interactions between the

system and the environment cells. Here, the time evolution
~k
SðtÞ was calculated from one particular initial state~k

Sð0Þ for

fifty different random environments of radius R¼ 1.75a at a

given environmental population N. This was repeated for vari-

ous population sizes N. In each case, Eo accurately character-

izes the timescale for f(t) by predicting its standard deviation

rt. Also, for a given environmental radius R, highly-populated

environments (having larger N) tend to interact more intensely

with the system (having higher Eo), driving a faster loss of

coherence (characterized by a lower rt).

Figure 8 provides further evidence that Eo characterizes

the strength of the system-environment interaction and

FIG. 4. The time dependence of quantum coherence as measured by the

length j~kSðtÞj of the coherence vector~k
SðtÞ. Here, j~kSðtÞj corresponds to the

~k
SðtÞ shown in Fig. 3. Initially, for t �0.25s, coherence decays rapidly from

full coherence (j~kSð0Þj ¼ 1) to a partial coherence. After the initial rapid

decay (t �0.25s), coherent oscillations in ~k
SðtÞ and j~kSðtÞj persist because

of internal dynamics of the system S.

FIG. 5. Decoherence driven by interaction with an environmental shell. The

same environmental configuration as in Fig. 3 is used with the same initial

state. Here, however, system internal dynamics are suppressed by setting

cS ¼ 0, leaving only the environmentally-driven decoherence. Only the evo-

lution calculated using the full operator-sum representation is shown here.

FIG. 6. Quantum coherence for the evolution of Fig. 5 as quantified by

j~kSðtÞj. The target molecule starts with full coherence (j~kSð0Þj ¼ 1) but

exhibits a loss in coherence with a Gaussian time dependence as environmen-

tal interaction drives a decay in jkS1 ðtÞj and jkS2 ðtÞj asymptotically to zero.

Since cS ¼ 0 here, charge tunneling is suppressed in the target molecule, and

~k
S
3 ðtÞ ¼~k

S
3 ð0Þ. Thus, the asymptotic length of~k

SðtÞ is determined by jkS3 ð0Þj.
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accurately predicts the timescale for the loss of coherence.

Here, �h=rt is plotted against Eo for fifty time evolutions,

each with a different randomized environment of population

N¼ 18 at a given environmental radius R. This is performed

for four different environmental radii. As in Fig. 7, each

ðEo; �h=rtÞ point falls on the red line marking Eo ¼ �h=rt.

Environmental shells of smaller R interact more strongly

with the target cell and drive decoherence on a shorter time-

scale. This is consistent with the fact that the potential

energy of Coulomb interaction is inversely proportional to R.

Additionally, as R decreases, the randomized orientation of

each environmental molecule has a greater impact on the

overall energetics of the system, yielding higher variation in

the Eo values. At large values of R, however, the random ori-

entation of the environmental molecules has very little

impact on the already weak (low-Eo) system-environmental

interaction. Thus, for large R values, the ðEo; �h=rtÞ pairs are

closely clustered near one point on the Eo ¼ �h=rt line at low

Eo; on the other hand, for smaller R, the ðEo; �h=rtÞ points

exhibit more variation, but still fall on the Eo ¼ �h=rt line at

higher values of Eo.

C. A reduced operator-sum representation for the
decoherence-dominated case

While the full set of Kraus operators is accurate, it also

may be unwieldy. Therefore, a reduced set of Kraus opera-

tors is sought for the Gaussian decoherence in the cS ! 0

limit. It is well-known that a phase decay process can be

modeled for a single two-state system by an operator-sum

equation using only two Kraus operators25

M̂0 ¼
1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffi
1� T
p

	 

and M̂1 ¼ 0

ffiffiffi
T
p

0 0

	 

: (20)

The desired Gaussian time dependence is obtained if

T ¼ 1� exp
t

rt

� �2

: (21)

Figure 9 demonstrates the use of the reduced, two-

operator Kraus set defined by Eqs. (20) and (21) to approxi-

mate the exact result. The exact results are for a single time

evolution of an environment of N¼ 18 molecules. This

required a set of 218 Kraus operators, each of which is a 2-

by-2 matrix. For larger (but finite) N, the numerous environ-

mental degrees of freedom lead to longer coherence revival

times and more effectively suppress coherence in the target

system. For smaller N, fewer environmental degrees of free-

dom allow more revival in quantum coherence on a shorter

timescale. After the decay in coherence has reduced f(t) suf-

ficiently, slight revivals in quantum coherence slightly dis-

rupt the Gaussian form of f(t) (note: the deviation from

FIG. 7. The relationship between �h=rt and Eo is highly linear. Here, �h=rt is

plotted against Eo for several random environmental configurations for vari-

ous values of environmental population N. In each calculation, a¼ 1 nm and

R/a¼ 1.75. In all cases, the points ðEo; �h=rtÞ fall on the red line marking

Eo ¼ �h=rt.

FIG. 8. The highly linear relationship between �h=rt and Eo. Here, �h=rt is

plotted against Eo for several random environmental configurations of popu-

lation N¼ 18 at several values of environmental radius R. In all cases, the

points ðEo; �h=rtÞ fall on the red line marking Eo ¼ �h=rt.

FIG. 9. Comparison of early time dynamics from a full operator-sum represen-

tation and reduced operator-sum representation. The operator-sum representa-

tion result using only the two Kraus operators (the reduced set) of Eqs. (20)

and (21) very closely approximates the results of an operator-sum representa-

tion of 2N Kraus operators (the full set) of the form of Eq. (17). Here, there are

N¼ 18 environmental molecules, so the two-member Kraus operator set repre-

sents a significantly-reduced but highly accurate reduction of the full 218-opera-

tor set.
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Gaussian behavior is not readily observed in the plot of Fig.

9, but it is evident in the lower frame of the Appendix Fig.

10). Since the Kraus operator pair of Eq. (20) cannot model

revivals in quantum coherence, this reduced operator set

becomes exact in the limit of large N, where revivals in

coherence are fully suppressed.

V. CONCLUSIONS

Beginning with an exact model of a target double-dot

QCA molecule immersed in a randomized environment of N
neighboring molecules, a system is established in which

quantum decoherence may be studied. This is achieved by

suppressing tunneling in the environmental cells, eliminating

energy transfer between the target cell and its environment.

In this non-dissipative limit, we select an environmental

basis and calculate a full set of 2N Kraus operators, which

model the dynamics of the target molecule exactly in an

operator-sum representation.

In the limit of electrostatic system-environment interac-

tion dominating the internal dynamics of the target cell

(cS ! 0), a decay in coherence results. Specifically, this loss

of coherence has a Gaussian form when coherence is mea-

sured by the length of the coherence vector~k
SðtÞ for the tar-

get molecule.

The timescale rt for the Gaussian loss of coherence is

determined by Eo, the root-mean-square value of the energies

of interaction fEflip
~mp
g between the target molecule and the

environment in each state j~mpi. Here, the full, potentially-

numerous set of Kraus operators can be approximated using

only two operators. The approximation becomes exact in the

limit of large environment population N, greatly alleviating

the computational burden associated with this calculation.

Models of quantum decoherence and other quantum

phenomena relevant in QCA operation are an important step

in the realization of molecular QCA computing systems.

Presently, molecular QCA remain unrealized, and the perfor-

mance of candidate molecules is unknown. Models of molec-

ular QCA can close a theoretical design loop in which

candidate molecules are characterized using quantum chem-

istry, their performance is predicted using appropriate mod-

els, and the molecular design is altered as required to

optimize performance. This can lead to vast savings in

resources by avoiding the development of synthesis routes

for unoptimized molecules, a task that may take years for a

single candidate molecule. Such models could play a signifi-

cant enabling role in the realization of high-speed, energy-

efficient, molecular QCA computing devices.
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APPENDIX A: DERIVATION OUTLINE FOR THE FULL
OPERATOR-SUM REPRESENTATION

The derivation of the full Kraus operator set begins with

the solution q̂ðtÞ to the quantum Liouville equation

q̂ðtÞ ¼ ÛðtÞq̂ð0ÞÛ†ðtÞ : (A1)

The initial global density matrix q̂ð0Þ ¼ q̂Sð0Þ � jE0ihE0j is

a tensor product of a system initial state q̂Sð0Þ and an envi-

ronmental initial state q̂Eð0Þ ¼ jE0ihE0j. Here, jE0i is the

state-vector representation of the initial environmental state.

It is well-known that Kraus operators are not unique but

rather are basis-dependent. Therefore, we select the environ-

mental computational basis fj~mpig as the basis over which

we trace out the reduced density matrix q̂SðtÞ for S from the

global density matrix q̂ðtÞ

q̂SðtÞ ¼ TrE q̂ðtÞ ¼
X2N�1

p¼0

h~mpjq̂ðtÞj~mpi

¼
X2N�1

p¼0

h~mpjÛðtÞq̂Sð0ÞjE0ihE0jÛ
†ðtÞj~mpi:

Here, the environment consists of N two-state systems and

has 2N degrees of freedom. We commute q̂S and jE0i with

impunity since q̂S acts on the Hilbert space of the system S,

but jE0i is of the Hilbert space of the environment

q̂SðtÞ ¼
X2N�1

p¼0

h~mpjÛðtÞjE0iq̂Sð0ÞhE0jÛ
†ðtÞj~mpi :

Finally, define K̂~mp
ðtÞ � h~mpjÛðtÞjE0i to obtain the more

compact result, the operator-sum equation

FIG. 10. The function jf ðtÞj (upper panel) captures the time dependence of

the data given in Fig. 5. In the lower panel, the linearization of Eq. (B2) is

calculated and plotted so that y ¼ lnð�lnjf ðtÞjÞ and x ¼ lnt. A red line of

slope 2 is superimposed on the data, showing that the data have a time-

dependence which is very close to Gaussian, especially as t ! 0 (or x
becomes very negative). As jf ðtÞj ! 0 with increasing time, slight devia-

tions from the Gaussian form become more evident. These deviations are

due to the finite environmental population (N<1), which allows revivals in

coherence on a finite timescale.
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q̂SðtÞ ¼
X2N�1

p¼0

K̂~mp
ðtÞq̂Sð0ÞK̂

†

~mp
ðtÞ ; (A2)

where K̂~mp
ðtÞ is the pth Kraus operator. A combination of

computer and manual algebraic manipulations in the limit of

suppressed charge tunneling in the environment (cE ¼ 0)

was undertaken to find the form of K̂~mp
ðtÞ. The remainder of

this discussion assumes the cE ¼ 0 limit.

We can expand the environmental state jE0i using the

computational basis states

jE0i ¼
X2N�1

p¼0

cpj~mpi:

It can be shown that h~mpjÛðtÞj~mp0 i ¼ 0̂ for p 6¼ p0, thus

reducing K̂~mp
ðtÞ to

K̂~mp
ðtÞ ¼ cph~mpjÛðtÞj~mpi: (A3)

The coefficient cp can be determined under problem

constraints imposed on the environmental initial state jE0i.
jE0i is chosen to be a direct product of N charge-neutral

environment cells, each having an initial state

jwl 0ð Þi ¼ eihlffiffiffi
2
p j0li þ ei/l j1li
� �

:

Thus, the environmental initial state may be written as

jE0i ¼ jwN 0ð ÞijwN�1 0ð Þi � � � jw2 0ð Þijw1 0ð Þi

¼ eiH

2N=2

XNE�1

p¼0

eiUp j~mpi ;

where

H ¼
XN

l¼1

hl ; and Up ¼
XN

l¼1

~mp

� �
l
/l :

Here, ½~mp�l is the lth digit of the binary word ~mp, as in Eq.

(1). Thus, cp is clearly

cp ¼ h~mpjE0i ¼ 2�N=2eiðHþUpÞ :

However, the phase factor eiðHþUpÞ may be neglected in

K̂~mp
ðtÞ, because K̂

†

~mp
ðtÞ introduces the conjugate factor

e�iðHþUpÞ, eliminating any impact the factor eiðHþUpÞ might

have on the time dependence of Eq. (A2).

It can be shown by a combination of computer analysis

and hand analysis that

h~mpjÛ tð Þj~mpi ¼
1

�~mp

�~mp
cos

�~mp
t

2�h

� �
Î

�

þi sin
�~mp

t

2�h

� �
2cSr̂1 þ Eflip

~mp
r̂3

� ��
;

with �~mp
and Eflip

~mp
as given in Eqs. (11) and (12). Following

the prescription of Eq. (A3), we multiply this by 2�N=2 ¼
1=

ffiffiffiffiffiffi
NE
p

to account for cp (modulo the phase factor eiðHþUpÞ)
and obtain the expression of Eq. (14) for the pth Kraus oper-

ator K̂~mp
ðtÞ.

APPENDIX B: A LINEARIZATION TECHNIQUE FOR
FITTING GAUSSIAN DATA

Let a Gaussian function g(t) of unit height be described

by

g tð Þ ¼ exp � t� t0ffiffiffi
2
p

r

� �2
 !

; (B1)

where t0 is the position of the Gaussian peak, and r is the

standard deviation of the Gaussian. A linear relationship is

obtained if the natural logarithm of this function is taken

twice with one intervening sign flip

ln �ln g tð Þð Þð Þ ¼ 2ln
t� t0ffiffiffi

2
p

r

� �

¼ 2ln t� t0ð Þ � 2ln
ffiffiffi
2
p

r
� �

: (B2)

Thus, if a set of data h(t) has a Gaussian dependence on t,
then a plot of y ¼ lnð�lnðhÞÞ versus x ¼ lnt will yield a line

of slope 2. Moreover, the standard deviation r may be

obtained from y0, the y-intercept of the linearized data

r ¼ 1ffiffiffi
2
p exp � y0

2

� �
: (B3)

We demonstrate in Fig. 10 the approximate Gaussian

time dependence of the data shown in Fig. 5. The function

jf ðtÞj, which determines the time dependence of j~kSðtÞj for

that particular evolution, is plotted in the upper panel of Fig.

10. jf ðtÞj is linearized according to Eq. (B2) yielding the plot

of lnð�lnjf jÞ versus x ¼ lnðt=sEÞ in the lower panel. Since

these transformed data are closely fitted to a line of slope 2,

this time dependence is shown to be approximately

Gaussian. The Gaussian fit is increasingly accurate at early

times (negative x with large magnitude).
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