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Abstract—Quantum-dot cellular automata (QCA) is a
paradigm for low-power, general-purpose, classical computing
beyond the transistor era. In classical QCA, the elementary device
is a cell, a system of quantum dots with a few mobile charges
occupying some dots. Device switching is achieved by quantum
mechanical tunneling between dots, and cells are interconnected
locally via the electrostatic field. Logic is constructed by lay-
ing out arrays of QCA cells on a two-dimensional substrate.
Several different implementations of QCA exist. Neuromorphic
computing is computing which mimics aspects of how our
brains compute. This includes parallel processing using highly
interconnected primitives which combine local processing and
memory. Viable neuron-like devices suitable for neuromorphic
computation require a weighted signal fan-in, a way to aggregate
signals, and a spike (pulse) output mechanism. The inputs to
a neuron can be “excitatory” or “inhibitory” which refers to
their ability to encourage or discourage a neuron to fire. We
briefly review the concept of QCA and discuss how QCA cells
satisfy these requirements. Viable implementations for QCA-
based neuromorphism, and challenges that exist for implementing
neuromorphic devices in QCA also will be discussed.

Index Terms—quantum-dot, cellular automata, QCA, neuro-
morphic

I. INTRODUCTION

We seek a new way of efficient computation. A positive
energy efficiency trend has been identified with digital com-
putation which shows that the number of computations per unit
of energy has been increasing over time. This trend, however,
is slowing down and approaching a line or “Efficiency Wall”
[1]. If this trend continues it will negatively impact the growth
of the computational capability of an all-silicon, all-digital
approach to computation. This work examines the concept
of neuromorphic computing based on quantum-dot cellular
automata (QCA). QCA is a low-power, energy efficient com-
puting paradigm offering scaleability to molecular dimensions
[2], [3]. Given this efficiency wall, the significance of this
work is twofold: low power and more capable hybrid QCA-
neuromorphic solutions to provide longer operation times and
more computing capability than currently available for power-
budget-constrained systems such as mobile autonomous robots,
smart phones, and Internet-of-Things (IoT) devices.

Section II provides bacground on the QCA concept. Section
III describes how QCA can be used to implement Neuro-
morphic computing, and Section IV provides conclusions and
challenges in QCA implementations of neuromorphic systems.
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Fig. 1. The states of a six-dot QCA cell are characterized by polarziation
(P ) and activation (A). Here, each white disc represents a quantum dot, and
each red disc represents one mobile electron. White connecting lines between
dots indicate tunneling paths, with the consequence that tunneling between
active states (“0” or “1”) requires an intermediate tunneling through the “Null”
state. The cell can be clocked to the Null state by applying a positive voltage
(Vclk > 0) to dots 2 and 5 (“null” dots), or to an active state by applying a
negative voltage (Vclk < 0) to the null dots. Clocking leads connected to the
null dots are not shown here.

II. QUANTUM-DOT CELLULAR AUTOMATA BACKGROUND

QCA is a paradigm for classical computing using transistor-
less logic [3], [4]. Here, systems of elementary QCA devices
are arranged on a substrate and coupled not via electric
current, but rather through Coulomb interaction via the local
electrostatic field.

The primitive device in QCA is a cell, in which a system of
quantum dots provide charge localization sites for a few mobile
charges. A cell’s charge configuration encodes a bit, and device
switching occurs via quantum charge tunneling between dots.
Fig. 1 shows a six-dot QCA cell with two mobile electrons in
three states, designated “0”, “Null”, and “1”, respectively. A
cell can be set to the Null state by applying a positive voltage
Vclk to dots 2 and 5 (designated “null dots”). Each state is
characterized by two numbers: polarization P and activation
A, which are functions of the mobile charge qk on each dot
(k ∈ {1, 2, . . . , 6}):

P =
q1 + q4 − q3 − q6

Q
, and A = 1− q2 + q5

Q
(1)

The valid ranges for P and A are [−1, 1] and [0, 1], respec-
tively. Here, Q =

∑6
k=1 qk = 2q is the total mobile charge on

all six dots, and q is the electronic charge. A bit is encoded
on the sign of P , and signal strength can be measured by
taking the absolute value of P . A weak bit has |P | < 1, and
a full-strength bit has |P | ' 1.

Intercellular coupling through the electrostatic field pro-
vides for a logically complete set of QCA devices [5], [6],
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Fig. 2. QCA six-dot-cell logic. Upper left: the output Y of a binary wire
matches its input X; lower left: an inverter uses diagonal interactions to flip a
bit; and, right: the majority gate is the natural logic gate in QCA. Three inputs
A, B, and C exercise equal influence over the central device cell, which takes
value M(A,B,C), the bit in the majority on the inputs. This bit is copied to
the output.

as depicted in Fig. 2. A row of cells tends to align, forming
a binary wire. Diagonal coupling provides bit inversion. The
majority gate is the natural logic gate in which three inputs
“vote” on state of the central device cell. The majority wins,
and this bit is copied to the output. Notably, one input to the
gate may be used as a control bit, providing a programmable,
two-input AND/OR gate between the two other inputs.
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Fig. 3. The clock Vclk is used to vary the strength of the polarization
response P (Pdrv , Vclk) of the target cell. The polarization Pdrv of a driver
cell (cell with dashed blue outline in the insets) is the logical input to the
target cell (cell with black outline in the insets), and the voltage Vclk is the
clocking voltage applied to the central (null) dots of the target cell. The cell’s
response is its polarization state P , coded in the color gradient shown here.
To write a “1” bit on the target cell, the driver is set to Pdrv = 1 while
the target cell is in the Null state (Vclk > 0), and Vclk clock is lowered
to a strongly negative potential (following the red “latch” arrow). Weak or
intermediate values of polarization (|P | < 1) result from a weakly negative
clock (∼ −0.5 V < Vclk < 0).

Clocking in QCA means controlling the whether a cell is in
an active state or the “Null” state. This is achieved by applying
a potential Vclk to the null dots. Fig. 3 shows the response
of a clocked six-dot cell to a single neighboring driver cell.
When clocked with a strongly-positive Vclk, the cell is driven to

the “Null” state regardless of interactions with of neighboring
cells. When Vclk is strongly negative, the target cell is clocked
to an active state as determined by the neighboring driver
cell. A cell cannot transition between active states without
an intermediate transition through the “Null” state. Therefore,
when clocked active, the cell is latched, because the clock
prohibits a transition to the ”Null” state. Another important
result here is that intermediate polarization values are possible
(i.e., P ∈ [−1, 1]), and the degree of polarization may be
controlled by the strength of the clock: a weakly-clocked cell
polarizes only partly, even when its neighbors are strongly
polarized.

III. NEUROMORPHIC COMPUTING WITH QCA
Neuromorphic computing traces its early roots to Carver

Mead of California Institute of Technology [7], [8] [9]. There
have been many analog neuromorphic solutions [10], [11] [12]
as well as digital neuromorphic solutions [13] [14] [15]. Our
QCA approach is a digital implementation approach. An earlier
work considered unclocked QCA cells, however that method
experiences a signal degradation problem [16]. In our proposed
clocked cell method, signal degradation is not an issue as the
clock provides signal gain to restore weakened signals. Also,
clocking, as previously discussed in Section II, enables the
selective weighting of connections. QCA devices suitable for
neuromorphic computation require: 1) an adjustable weighted
signal fan-in where the inputs to a neuron can be “excitatory”
or “inhibitory” with reference to their ability to encourage or
discourage a neuron to fire, 2) a way to aggregate (integrate)
signals, and 3) a spike (pulse) output mechanism. The next
sections describe candidate implementation methods of these
three capabilities.

A. Synaptic weights
This paper presents two methods of synaptic weighting.

First, partial clocking can be used to decrease the weight of
some signals. Secondly, fan-out can be used to replicate a
signal and send multiple copies to another cell.

1) Partial Clocking: Partial polarizations provide for rela-
tive weightings to a majority cell, as is shown in Fig. 4. Here,
the inputs 1, 2, and 3 each are separated from the central
device cell (cell 7) by one linking cell (cells 4, 5 and 6).
If full-strength clocking is used on the coupling cells, then
these linking cells provide full-strength inputs to the device
cell. If, however, partial (weak) clocking is used for some
linking cells (here, 4 and 6), those selected linkers polarize
only partially and provide an input of diminished strength to
cell 7. Under full and equal clocking for all linkers, the two
inputs P1 = P3 = −1 (“0” bits) dominate the minority P2 = 1
(a “1” bit); but, when cells 4 and 6 are only partially clocked,
the inputs from 1 and 3 are transmitted only weakly to cell
7 so that the minority “1” bit can dominate the two weaker
“0” bits. The simulation data shown here is for 20-nm-by-20-
nm metallic QCA cells. An inter-dot tunneling energy of 50
meV was used. The inputs P1, P2, and P3 were fixed, and for
each data point, the time-independent Schrödinger equation
was solved, and the ground state was calculated for cells 4-8.
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Fig. 4. Partial clocking can be used to modify the relative weights of inputs
to a device. Full-bit inputs (cells 1, 2, and 3) couple to the majority cell (7)
via cells 4, 5, and 6. Cells 1 and 3 provide a majority “0” bit, and clock Vc,M

is applied to cells 4 and 6. Cell 2 provides a minority “1” input, and clock
Vc,m = −1 V is applied to cells 5, 7, and 8. Point A represents the case where
Vc,M ∼ Vc,m. Here, the majority input wins the device cell and is copied
to the output. Point B represents partial clocking on cells 4 and 6. Inputs
1 and 3 now have a weaker coupling to cell 7, but the weakened majority
“0” still dominates the minority “1”. Point C represents the case where the
majority bits couple so weakly to cell 7 that the fully-coupled minority “1”
bit dominates the weaker majority input.

2) Fan-out replication: In QCA, it is most natural to
have three inputs and one output because nearest-neighbor
interactions maximize intercellular coupling. Thus, 3n inputs
can be fanned into a majority gate using cascaded majority
gates, as in Fig. 5, where n is the number of cascaded stages.
An additional way to vary the relative weights of inputs is
through fan-out. A single bit can be fanned out using a circuit
like that shown in Fig. 5 (right-hand side). Then, multiple
copies of that bit can be provided to a dendritic tree, giving
that bit more weight.

Additionally, a combination of these two methods can be
used: selective input signal weighting through clocking, and
fan-out-based signal multiplication.

B. Signal Integration and Spiking

The majority operation is used to implement signal inte-
gration and spiking. If the number of 1’s exceeds the number
of 0’s then the QCA cell becomes a 1, which is equivalent
to firing a spike. This integration is implementing a simple
“Integrate and Fire” neuron [7]. Once the integration reaches a
threshold, the neuron fires. Our threshold is adaptable by using
fixed Excitatory or fixed Inhibitory cells. The combination of
fixed cells and the number of synaptic connections sets the
threshold, Fig 6. Fig. 6a shows six pre-synaptic signals arriving

Fig. 5. Fan-in and fan-out circuits: a multi-stage fan-in circuit (left) provides
for multi-bit fan-in. Intercellular interactions are maximized by nearest-
neighbor coupling. Therefore, it is natural for a fan-in to have three inputs.
Many inputs can be fanned in using multiple stages of majority logic, which
function as three-input fan-in structures. Right: fan-out produces copies of
a bit and may be used to increase the weight of a signal to another QCA
cell. Multiple bit copies can be fed to a gate, increasing its weight through
redundancy.

at this neuron. Each signal has a synapse (E through J). In
this example, the threshold is set to 5. This can be deduced by
applying (2-5). In this implementation, the synapses are turned
on or off (i.e. “1” or “0”). The fixed cells are providing “0”
bits. If in this case 2 or more input signals are excitatory, then
the neuron fires (which is equivalent to outputting a 1). Fig.
6b shows a QCA abstraction of the fixed inhibitory cells. Fig.
6c shows how the threshold can be adjusted using excitatory
fixed cells. This provides a binary (on or off) synapse method.

NE = # of Excitatory Fixed Cells (2)
NI = # of Inhibatory Fixed Cells (3)
NS = # of synaptic connections (4)

Threshold = [(NS +NE −NI) /2]− (NE −NI) (5)

A second synapse method provides a way to create an
adjustable synapse weight by using two QCA concepts: fan-out
signal replication, and on-off clocking. In Fig. 7, there are two
axons connecting to this neuron. They carry signals S1 and
S2. Fig. 6 showed how these signals can be weighted using
binary weights (i.e they either pass the signal, or attenuate the
signal). Fig. 7 shows how axon signals can have non-binary
synaptic strength. In Fig. 7, the pre-synaptic signals S1 and
S2 are each copied three times. In this example, Inhibitory
connections can be selectively used to create four different
synaptic weight options: 0, 1/3, 2/3 and 1. For proper scaling,
it is important that all input axons be copied the same number
of times. The weight resolution depends on how many times
each pre-synaptic signal is copied.

IV. CONCLUSIONS

We have proposed methods by which QCA can implement
a few important operations needed for a neuromorphic system.
We have shown two ways of implementing synaptic weighting
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Fig. 6. Excitatory and inhibitory connctions and integrate and fire thresholds are shown in this picture. The thresholds can be adaptively set according to (5).
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Fig. 7. Excitatory and inhibitory connctions and integrate and fire thresholds
are shown in this picture. The thresholds can be adaptively set according to
(5).

and described a candidate QCA integrate-and-fire neuron. We
anticipate a Spike Timing Dependent Plasticity (STDP) learn-
ing method for determining the fan or cell clocking weights.

While there are numerous implementations for QCA, metal-
dot [17] or semiconductor [18] implementations are envisioned
for this application because cells may be individually clocked.
In these implementations, however, fabrication is a significant
challenge: presently, circuits with only very few QCA cells can
be fabricated, as each additional cell dramatically increases the
complexity of the layout. In-situ learning also is currently a
challenge. Memristors, a candidate for neuromorphic imple-
mentations, have been shown to be immune to their variability
[19]. The transition region between B and C in our numerical
simulation in Fig. 4 shows that a small-scale weighted input
system is sensitive to an imprecise clock. The ramifications of
this for a multi-neuron system are an area of future research.
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