1. The exam is open-book/open-notes.

2. A calculator and the assigned computer using Mathcad software may be used to assist with the test.
 No laptops or PDAs are allowed. No cellular phones may be used in any way during the test.
 Unauthorized electronic device use will result in disqualification.

3. You must circle or box your answers to get full credit.

4. All work and steps toward a solution must be clearly shown to obtain credit.

5. Partial credit may be given provided that the grader can clearly follow your work to the extent that an
 understanding of the problem is demonstrated.

6. No collaboration is allowed on this examination. Only Dr. Baylis may be consulted for clarification.

7. Please attach all hand calculations, Mathcad sheets and additional Smith Charts (if necessary) to the
 exam. Mathcad sheets should contain appropriate comments to allow the grader to follow your work.
 Each page should contain your name, the problem number, and the page number for that problem.

Please sign the statement below. YOU MUST SIGN THE STATEMENT OR YOU WILL GET A ZERO
FOR THIS EXAMINATION!!!

I hereby testify that I have neither provided or received information from unauthorized sources during the
test and that this test is the sole product of my effort.

Signed _______________________________ Date_____________________

PROBLEM 1 (25 points): Use a ZY Smith chart to design a Pi matching network to transform $Z_{\text{LOAD}} = 50 \, \Omega$ to the input impedance $Z_{\text{IN}} = (35 + j40) \, \Omega$ with a Q_n of 3. Draw the matching network with the load and input sides clearly indicated. Give the impedance of each component in Ohms.

PROBLEM 2 (20 points): Design a microwave transistor amplifier for $G_{T, \text{max}}$ using a Si MOSFET whose S-parameters in a 50-Ω system under certain bias conditions at 1.2 GHz are the following:

$$
\begin{align*}
S_{11} &= 0.33 \angle 65^\circ \\
S_{12} &= 0.03 \angle -15^\circ \\
S_{21} &= 7.21 \angle -20^\circ \\
S_{22} &= 0.09 \angle 20^\circ
\end{align*}
$$

Answer the following questions. Turn in any applicable Mathcad sheets and Smith charts.

(a) (5 points) Is the device unconditionally stable at 1.2 GHz? Justify your answer.

(b) (5 points) What is the maximum value of transducer gain, $G_{T, \text{max}}$, in dB?

(c) (10 points) What values of Γ_s and Γ_L will provide $G_{T, \text{max}}$?
PROBLEM 3 (40 points): A GaAs MESFET has the following S-parameters at 2.5 GHz:

\[
\begin{align*}
S_{11} &= 0.65 \angle 98^\circ \\
S_{12} &= 0.05 \angle 11^\circ \\
S_{21} &= 5.01 \angle 100^\circ \\
S_{22} &= 0.52 \angle -15^\circ
\end{align*}
\]

(a) (5 points) Is the device unconditionally stable at 2.5 GHz? Why or why not?

(b) (10 points) If the device is potentially unstable, plot the source and load stability circles on two separate Smith charts. Indicate clearly the stable and unstable regions. Identify the Smith charts clearly as the \(\Gamma_s \) and \(\Gamma_L \) Smith charts, appropriately.

(c) (20 points) Design a stable amplifier with \(G_T = 16 \) dB. Use the approach of designing for \(G_A = 16 \) dB and then setting \(\Gamma_L = \Gamma_{OUT} \). Clearly give your design values of \(\Gamma_s \) and \(\Gamma_L \). For sake of time in this exam, you are not required to evaluate that your choice of \(\Gamma_L \) is in the stable region on the \(\Gamma_L \) chart. Simply choose \(\Gamma_L \) in the stable region of the \(\Gamma_L \) chart, set \(\Gamma_s = \Gamma_{IN} \) and move on.

(d) (5 points) Determine \((\text{VSWR})_{in} \) and \((\text{VSWR})_{out} \).

PROBLEM 4 (15 points): Three cascade amplifiers have noise figures of \(F_1 = 0.6 \) dB, \(F_2 = 1.5 \) dB, and \(F_3 = 4.5 \) dB, with gains \(G_{A1} = 4 \) dB, \(G_{A2} = 12 \) dB, and \(G_{A3} = 14 \) dB. Calculate the overall noise figure in dB.