Amplifier Measurement Guidelines

Dr. Charles Baylis
ELC 4384: RF/Microwave Circuits II
March 18, 2014
Amplifier Measurements

• S-parameter measurements of amplifiers are critical:
 – Verification of amplifier performance
 – Data for system design

• Additional considerations weigh in designing the measurement setup.
Considerations in Measurement Setup

• The amplifier must remain in its linear range of operation.
• The measurement system must remain in its linear (and safe!) region of operation.
• The measurement system must be protected against potential oscillation.
Linear Amplifier Operation

- Power limitations to keep the amplifier in its linear range, or “small-signal behavior” vary from amplifier to amplifier.
- Linear range can be determined by a 50-ohm power sweep.
- Make sure you are well below the 1-dB compression point of the amplifier for “small-signal” measurements.
Linear Measurement Region

• The VNA has listed RF power limits at its port for “safe” operation.

• The linear region of the VNA is often much lower than these listed “safe” limits.

• Tradeoff
 – Keep power as low as possible.
 – Make sure your measurement is above the “noise floor.”
Oscillation Protection

• The measurement system must be protected against potential oscillations.

• The potential oscillations are at the upper power limit of the amplifier (determined by DC bias and loading).

• Only external attenuation can adequately protect against oscillation!
Power Level Adjustments

• Signal Power (Ports 1 and 2)
 – Adjust to fit in linear region of device.

• Internal Attenuation
 – Keep the measurement instrument in its linear measurement range.

• External Attenuation
 – Protect the instrument from damage.
 – Did I mention it is the only way to protect against an oscillating device?
Biasing Your Device Under Test

• NEVER bias a device until it is properly loaded (i.e. your output cables are connected).
 – An open circuit could produce instability in a device designed to see 50 ohms.
• BJT: Increase the base voltage, then increase the collector.
• FET: ALWAYS decrease the gate voltage below threshold BEFORE increasing the drain voltage.
• Avoid “turning on” the bias voltages. Instead you should slowly increase them.
Conclusions

• Always think about how much power is seen by both the device under test (your amplifier) and the measurement equipment.
• Protect your equipment against oscillation of the DUT.
• The order in which device ports are biased can be very important.