
Reflection Coefficient and Transmission Lines Using the Smith Chart 

 

As we discussed in class, the Smith Chart represents the complex plane of the reflection 

coefficient.  You will recall from class that the input reflection coefficient to a transmission line of 

physical length l, Г௜௡, is given in terms of the load reflection coefficient Г௅ by the expression 

Г௜௡ ൌ Г௅݁ି௝ଶఉ௟																																																																																		ሺ1ሻ 

This indicates that on the complex reflection coefficient plane (the Smith Chart), the point representing 

Г௜௡ can be found by a constant-radius rotation from the point representing Г௅.  This rotation represents a 

change in phase of the complex number, and is a rotation at constant radius because the magnitude of the 

reflection coefficient remains constant in (1) when finding Г௜௡from Г௅ (please note this by careful 

examination of (1)).  The phase changes by െ2݈ߚ.  This represents a rotation in the clockwise direction in 

the complex Г plane (the Smith Chart) by െ2݈ߚ radians.   

To graphically find Г௜௡ from Г௅ on the Smith Chart, locate Г௅ (or ݖ௅) on the Smith Chart.  Then, 

using your compass, draw a constant-radius circle centered at the center of the Smith Chart and going 

through Г௅.  Phase change of the reflection coefficient due to a transmission line will cause the value of 

reflection coefficient (and impedance) to rotate along this circle in the clockwise direction.  The distance 

of rotation has been computed for you in the creation of the Smith Chart and is tabulated on the scale 

labeled “Wavelengths toward Generator” around the outside circumference of the Chart.    

We now work through an example in the Pozar book for practice and demonstration of how these 

techniques work.  Please pull out a Smith Chart, pencil, ruler, and compass, and work through this 

problem along with this tutorial. 

 

Pozar Example 2.2, p. 66: 

“A load impedance of 40 ൅ ݆70	Ω terminates a 100 Ω transmission line that is 0.3λ long.  Find the 

reflection coefficient at the load, the reflection coefficient at the input to the line, the input impedance, the 

standing wave ratio on the line, and the return loss.”  We will leave it to Pozar to explain standing wave 

ratio and return loss for now.  This tutorial will focus on finding the load reflection coefficient, input 

reflection coefficient and input impedance. 

 

Solution:  

The first step is to normalize the impedance: 

௅ݖ ൌ
ܼ௅
ܼ଴

ൌ
40 ൅ ݆70
100

ൌ 0.4 ൅ ݆0.7 



This number can be plotted on the Smith Chart.  See the location marked “1” on the Chart on the attached 

scanned pages of my solution.      

To measure Г௅, stretch the compass to place the pin on the center of the chart and the lead of the 

other arm on the point representing ݖ௅ (and of course this is also Г௅).  Then go to the bottom of the page 

and use the scale labeled “RFL COEFF, E or I”.  Place the pin on the location marked “CENTER” of this 

scale, and make a mark with your compass’ lead.  Read the value associated with the mark.  This is the 

magnitude of the reflection coefficient.  This scale is nicely laid out for you to use for this purpose.  This 

is labeled “2” on my Smith Chart attached to this document and is near the bottom of the Smith Chart 

page.  It can be seen from the scale that the magnitude of the reflection coefficient, |Г௅| is approximately 

0.58. 

To find Г௜௡ based on this, draw a line from the center of the Smith Chart (using your ruler) 

through the edge of the chart.  Read the reading on the outermost circumferential scale (this is the 

“WAVELENGTHS TOWARD GENERATOR” scale.  You should read approximately 0.105.  Write this 

on your chart.  This is your starting point on this scale.  I have labeled this step as “3”.  Now, add the 

length of the line, in wavelengths, to this number 0.105.  This gives the number on the 

“WAVELENGTHS TOWARD GENERATOR” scale that should be read when you draw a line through 

Г௜௡.  Since in this example the line is 0.3 wavelengths long, the addition to be performed is 0.105λ + 0.3λ 

= 0.405λ.  Now draw a line from the center of the Smith Chart through 0.405 on the “WAVELENGTHS 

TOWARD GENERATOR” scale.  This is labeled as “4” on my Smith Chart.  The intersection of this line 

and the circle you have drawn on the chart is the point representing Г௜௡ and ݖ௜௡.  The value of Г௜௡ is now 

easily determined.  The magnitude is the same as |Г௅| because the point is on a constant radius circle in 

the reflection-coefficient plane (on the same radius as Г௅).  The angle has changed, but can be easily read 

by the intersection of the line through Г௜௡ with the “ANGLE OF REFLECTION COEFFICIENT IN 

DEGREES” scale.  This is the third scale from the outside on the outer circumference of the Smith Chart.  

It appears that the angle of the input reflection coefficient is -112° by reading this scale.  This reading is 

shown and is labeled as “5” on the Smith Chart.   

The input impedance ݖ௜௡ is represented by the same point as Г௜௡, because the Smith Chart is a 

superimposition of the resistance and reactance circles on the complex reflection-coefficient plane.  Thus 

we can read ݖ௜௡ by finding the resistance and reactance circles that go through this point.  The resistance 

circle appears to be 0.37 and the reactance circle appears to be -0.61 (recall that reactance circles on the 

bottom half of the Smith Chart represent negative reactances).  Thus, the value of input impedance is  

௜௡ݖ ൌ 0.37 െ ݆0.61 

The input impedance in Ohms, ܼ௜௡, is found by un-normalizing ݖ௜௡(multiplying it by the reference 

impedance ܼ଴: 



ܼ௜௡ ൌ ௜௡ܼ଴ݖ ൌ ሺ0.37 െ ݆0.61ሻሺ100ሻ ൌ ሺ37 െ ݆61ሻ Ω 

 

Your upcoming lab (Lab 2) shows results of putting impedances on the end of a transmission line.  

When a load impedance is placed on a transmission line, clockwise motion with constant radius results on 

the Smith Chart as a result of this line being placed between the reference plane (the viewpoint) and the 

load impedance, as we have seen in this example.  How far the rotation goes around the Smith Chart in 

the clock is based on the number of wavelengths long the line is (the “WAVELENGTHS TOWARD 

GENERATOR” scale).  Note that the wavelength is a function of the frequency.  At higher frequencies, 

the wavelength is smaller, so a physical transmission line of fixed physical length l will have a longer 

electrical length ݈ߚ and will be longer in terms of the number of wavelengths it causes rotation.  Thus, for 

higher frequencies, the rotation is greater and for lower frequencies, the rotation is not as far.  In the 

laboratory, you will use the network analyzer to measure the input reflection coefficient of a short circuit 

on the end of a transmission line over a range of frequencies (300 kHz to 3 GHz).  At 300 kHz, the line’s 

length in wavelengths will be very small, but at 3 GHz, the line may be much longer.  As a result, the 

trace of input reflection coefficient will begin near the short circuit position on the left of the Smith chart 

and trace clockwise at constant radius (in this case, around the edge of the Smith Chart) as frequency goes 

higher.  If the line is physically longer, than at each frequency the line is electrically longer, and the trace 

will extend further around the Smith Chart.  For longer lines, you may actually see over one complete 

rotation around the chart, indicating that the line is over half a wavelength long at the higher frequencies.  

(You will do the same thing for the open circuit, which begins at the open-circuit position on the right 

side of the Smith Chart).   
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