ELC 4383 - RF/Microwave Circuits I

Mixers/Diodes Supplemental Homework

SMD.1. A mixer is designed to receive an RF input signal at a frequency of 3000 MHz and downconvert it to an IF signal at 400 MHz . Assume that the following power levels are measured at the ports of a frequency-conversion system containing the mixer and necessary filtering:

(a) If the local oscillator frequency is higher than the RF frequency, give the LO frequency and the image frequency.
(b) Calculate the conversion loss.
(c) Calculate the RF-to-IF isolation.

SMD.2. A mixer is designed to receive an RF input signal at a frequency of 4000 MHz and downconvert it to an IF signal at 200 MHz . Assume that the following power levels are measured at the ports of a frequency-conversion system containing the mixer and necessary filtering:

(a) If the local oscillator frequency is higher than the RF frequency, give the LO frequency and the image frequency.
(b) Calculate the conversion loss.
(c) Calculate the RF-to-IF isolation.

SMD.3. A mixer is designed to receive an RF input signal at a frequency of 8000 MHz and downconvert it to an IF signal at 700 MHz . Assume that the following power levels are measured at the ports of a frequency-conversion system containing the mixer and necessary filtering:

(a) If the local oscillator frequency is higher than the RF frequency, give the LO frequency and the image frequency.
(b) Calculate the conversion loss.
(c) Calculate the LO-to-IF isolation.

SMD.4. A mixer contains a diode with the following parameters: $\mathrm{C}_{\mathrm{j}}=0.7 \mathrm{pF}, \mathrm{R}_{\mathrm{s}}=5 \Omega, \mathrm{I}_{\mathrm{s}}=20 \mu \mathrm{~A}$, and

SMD.5. A mixer contains a diode with the following parameters: $\mathrm{C}_{\mathrm{j}}=0.9 \mathrm{pF}, \mathrm{R}_{\mathrm{s}}=2 \Omega, \mathrm{I}_{\mathrm{s}}=15 \mu \mathrm{~A}$, and $\mathrm{L}_{\mathrm{p}}=\mathrm{C}_{\mathrm{p}}=0$. Use $\alpha=1 /(25 \mathrm{mV})$. Compute the open-circuit voltage sensitivity at 1.5 GHz for $\mathrm{I}_{0}=20 \mathrm{~mA}$.

