ELC 4383 – RF/Microwave Circuits I

Chapter 4 Supplemental Homework

S4.1. Consider the two-port network given below:

- (a) Find S_{11} for $Z_0 = 50 \Omega$.
- (b) Find S_{21} for $Z_0 = 50 \Omega$.

S4.2. Consider the two-port network given below:

- (a) Find S_{11} for $Z_0 = 50 \Omega$.
- (b) Find S_{21} for $Z_0 = 50 \Omega$.

S4.3. Consider the following two-port network:

- (a) Find S_{11} , referenced to $Z_0 = 50 \ \Omega$.
- (b) Find S_{21} , referenced to $Z_0 = 50 \Omega$.

S4.4. Consider a two-port network with S-parameters (taken with respect to $Z_0 = 50 \Omega$) given as follows:

$$[S] = \begin{bmatrix} 0.3 \angle 0^{\circ} & 0.6 \angle 50^{\circ} \\ 0.6 \angle 50^{\circ} & 0.3 \angle 0^{\circ} \end{bmatrix}$$

(a) Is the network reciprocal? Why or why not?

(b) Is the network lossless? Show that your answer is correct based on the mathematical equation identities regarding S-parameters for lossless networks.

(c) What is the input reflection coefficient looking into port 1 if a 100 Ω resistor is connected as the load to port 2?

S4.5. Consider a two-port network with S-parameters (taken with respect to $Z_0 = 50 \Omega$) given as follows:

$$[S] = \begin{bmatrix} 0.2 \angle 90^{\circ} & 0.2 \angle 0^{\circ} \\ 0.9 \angle 100^{\circ} & 0.2 \angle -90^{\circ} \end{bmatrix}$$

(a) Is the network reciprocal? Why or why not?

(b) Is the network lossless? Show that your answer is correct based on the mathematical equation identities regarding S-parameters for lossless networks.

(c) What is the input reflection coefficient looking into port 1 if a 20 Ω resistor is connected as the load to port 2?

S4.6. Consider a problem in which two two-port networks, each possessing the given S-parameters, are placed in cascade:

The S-Parameters for each individual network (with $Z_0 = 50 \Omega$) are:

 $S_{11} = 0.1$

 $S_{12} = 0.9$

 $S_{21} = 0.9$

$$S_{22} = 0.1$$

Find the ABCD matrix for the <u>cascade combination</u> of the networks.