TEST 1 FORMULA SHEET

Table 2-3: Properties of standing waves on a lossless transmission line.

Voltage maximum	$ \widetilde{V} _{\max} = V_0^+ [1+ \Gamma]$		
Voltage minimum	$ \widetilde{V} _{\min} = V_0^+ [1 - \Gamma]$		
Positions of voltage maxima (also positions of current minima)	$l_{\max} = \frac{\theta_{\rm r}\lambda}{4\pi} + \frac{n\lambda}{2}, n = 0, 1, 2, \dots$		
Position of first maximum (also position of first current minimum)	$l_{\max} = \begin{cases} \frac{\theta_r \lambda}{4\pi}, & \text{if } 0 \le \theta_r \le \pi \\ \frac{\theta_r \lambda}{4\pi} + \frac{\lambda}{2}, & \text{if } -\pi \le \theta_r \le 0 \end{cases}$		
Positions of voltage minima (also positions of first current maxima)	$l_{\min} = \frac{\theta_{\rm r} \lambda}{4\pi} + \frac{(2n+1)\lambda}{4}, n = 0, 1, 2, \dots$		
Position of first minimum (also position of first current maximum)	$l_{\min} = \frac{\lambda}{4} \left(1 + \frac{\theta_{\rm r}}{\pi} \right)$		
Input impedance	$Z_{\rm in} = Z_0 \left(\frac{Z_{\rm L} + j Z_0 \tan \beta l}{Z_0 + j Z_{\rm L} \tan \beta l} \right)$		
Positions at which Zin is real	at voltage maxima and minima		
Z _{in} at voltage maxima	$Z_{\rm in} = Z_0 \left(\frac{1 + \Gamma }{1 - \Gamma } \right).$		
Z _{in} at voltage minima	$Z_{in} = Z_0 \left(\frac{1 - \Gamma }{1 + \Gamma } \right)$		
Zin of short-circuited line	$Z_{\rm in}^{\rm sc} = j Z_0 \tan \beta l$		
Zin of open-circuited line	$Z_{\rm in}^{\rm oc} = -j Z_0 \cot \beta l$		
$Z_{\rm in}$ of line of length $l = n\lambda/2$	$Z_{\rm in} = Z_{\rm L}, n = 0, 1, 2, \dots$		
$Z_{\rm in}$ of line of length $l = \lambda/4 + n\lambda/2$	$Z_{\rm in} = Z_0^2/Z_{\rm L}, n = 0, 1, 2, \dots$		
Z _{in} of matched line	$Z_{in} = Z_0$		
$ V_0^+ = \text{amplitude of incident wave, } \Gamma = \Gamma e^{j\theta_r} \text{ with } -\pi < \theta_r < \pi; \theta_r \text{ in radians.}$			

$$\Gamma_{L} = \frac{V_{0}^{-}}{V_{0}^{+}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}$$

$$\Gamma_{in} = \frac{Z_{in} - Z_{0}}{Z_{in} + Z_{0}} = \Gamma_{L} e^{-j2\beta l}$$

$$S = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

Table 3-1: Summary of vector relations.

	Cartesian	Cylindrical	Spherical
	Coordinates	Coordinates	Coordinates
Coordinate variables	x, y, z	r, φ, z	R, θ, ϕ
Vector representation, A =	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \hat{\boldsymbol{\phi}}A_{\phi} + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{R}}A_R + \hat{\boldsymbol{\theta}}A_{\theta} + \hat{\boldsymbol{\phi}}A_{\phi}$
Magnitude of A, $ A =$	$\sqrt[+]{A_x^2 + A_y^2 + A_z^2}$	$\sqrt[4]{A_r^2 + A_\phi^2 + A_z^2}$	$\sqrt[4]{A_R^2 + A_\theta^2 + A_\phi^2}$
Position vector $\overrightarrow{OP_1} =$	$\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}z_1,$ for $P(x_1, y_1, z_1)$	$\hat{\mathbf{r}}r_1 + \hat{\mathbf{z}}z_1,$ for $P(r_1, \phi_1, z_1)$	$\hat{\mathbf{R}}R_1$, for $P(R_1, \theta_1, \phi_1)$
Base vectors properties	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	$\hat{\mathbf{R}} \cdot \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = 1$
	$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$	$\hat{\mathbf{r}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{r}} = 0$	$\hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}} = 0$
	$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{z}}$	$\hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}}$	$\hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}}$
	$\hat{\mathbf{y}} \times \hat{\mathbf{z}} = \hat{\mathbf{x}}$	$\hat{\phi} \times \hat{\mathbf{z}} = \hat{\mathbf{r}}$	$\hat{\theta} \times \hat{\phi} = \hat{\mathbf{R}}$
	$\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}}$	$\hat{\phi} \times \hat{\mathbf{R}} = \hat{\theta}$
Dot product, $A \cdot B =$	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_\phi B_\phi + A_z B_z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product, $A \times B =$	$\left \begin{array}{ccc} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{array}\right $	$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_r & A_{\boldsymbol{\phi}} & A_z \\ B_r & B_{\boldsymbol{\phi}} & B_z \end{vmatrix}$	$\left egin{array}{cccc} \hat{\mathbf{R}} & \hat{oldsymbol{ heta}} & \hat{oldsymbol{\phi}} & \ A_R & A_{oldsymbol{ heta}} & A_{oldsymbol{\phi}} \ B_R & B_{oldsymbol{ heta}} & B_{oldsymbol{\phi}} \end{array} ight $
Differential length, $dl =$	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}} dr + \hat{\boldsymbol{\phi}} r d\phi + \hat{\mathbf{z}} dz$	$\hat{\mathbf{R}} dR + \hat{\boldsymbol{\theta}} R d\theta + \hat{\boldsymbol{\phi}} R \sin\theta d\phi$
Differential surface areas	$d\mathbf{s}_x = \hat{\mathbf{x}} dy dz$	$d\mathbf{s}_r = \hat{\mathbf{r}}r \ d\phi \ dz$	$d\mathbf{s}_R = \hat{\mathbf{R}}R^2 \sin\theta \ d\theta \ d\phi$
	$d\mathbf{s}_{y} = \hat{\mathbf{y}} dx dz$	$d\mathbf{s}_{\phi} = \hat{\boldsymbol{\phi}} dr dz$	$d\mathbf{s}_{\theta} = \hat{\boldsymbol{\theta}} R \sin \theta dR d\phi$
÷,	$d\mathbf{s}_z = \hat{\mathbf{z}} dx dy$	$d\mathbf{s}_z = \hat{\mathbf{z}}r dr d\phi$	$d\mathbf{s}_{\phi} = \hat{\boldsymbol{\phi}} R dR d\theta$
Differential volume, $dv =$	dx dy dz	r.dr dφ dz	$R^2 \sin \theta dR d\theta d\phi$

GRADIENT, DIVERGENCE, CURL, & LAPLACIAN OPERATORS

CARTESIAN (RECTANGULAR) COORDINATES (x, y, z)

$$\nabla V = \hat{\mathbf{x}} \frac{\partial V}{\partial x} + \hat{\mathbf{y}} \frac{\partial V}{\partial y} + \hat{\mathbf{z}} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \hat{\mathbf{x}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{y}} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{z}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

CYLINDRICAL COORDINATES (r, \phi, z)

$$\nabla V = \hat{\mathbf{r}} \frac{\partial V}{\partial r} + \hat{\mathbf{\phi}} \frac{1}{r} \frac{\partial V}{\partial \phi} + \hat{\mathbf{z}} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \frac{1}{r} \begin{vmatrix} \hat{\mathbf{r}} & \hat{\mathbf{\phi}} r & \hat{\mathbf{z}} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_r & rA_{\phi} & A_z \end{vmatrix} = \hat{\mathbf{r}} \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \hat{\mathbf{\phi}} \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) + \hat{\mathbf{z}} \frac{1}{r} \left[\frac{\partial}{\partial r} (rA_{\phi}) - \frac{\partial A_r}{\partial \phi} \right]$$

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$$

SPHERICAL COORDINATES (R, 0, 0)

$$\begin{split} \nabla V &= \hat{\mathbf{R}} \frac{\partial V}{\partial R} + \hat{\mathbf{\theta}} \frac{1}{R} \frac{\partial V}{\partial \theta} + \hat{\mathbf{\phi}} \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi} \\ \nabla \cdot \mathbf{A} &= \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 A_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi} \\ \nabla \times \mathbf{A} &= \frac{1}{R^2 \sin \theta} \begin{vmatrix} \hat{\mathbf{R}} & \hat{\mathbf{\theta}} R & \hat{\mathbf{\phi}} R \sin \theta \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_R & R A_\theta & (R \sin \theta) A_\phi \end{vmatrix} \\ &= \hat{\mathbf{R}} \frac{1}{R \sin \theta} \left[\frac{\partial}{\partial \theta} (A_\phi \sin \theta) - \frac{\partial A_\theta}{\partial \phi} \right] + \hat{\mathbf{\theta}} \frac{1}{R} \left[\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial}{\partial R} (R A_\phi) \right] + \hat{\mathbf{\phi}} \frac{1}{R} \left[\frac{\partial}{\partial R} (R A_\theta) - \frac{\partial A_R}{\partial \theta} \right] \\ \nabla^2 V &= \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} \end{split}$$