TEST 1 FORMULA SHEET

Table 2-3: Properties of standing waves on a lossless transmission line.

Voltage maximum Voltage minimum	$\begin{aligned} & \|\widetilde{V}\|_{\max }=\left\|V_{0}^{+}\right\|[1+\|\Gamma\|] \\ & \|\widetilde{V}\|_{\min }=\left\|V_{0}^{+}\right\|[1-\|\Gamma\|] \end{aligned}$
Positions of voltage maxima (also positions of current minima) Position of first maximum (also position of first current minimum)	$\begin{aligned} & l_{\max }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{n \lambda}{2}, \quad n=0,1,2, \ldots \\ & l_{\max }= \begin{cases}\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}, & \text { if } 0 \leq \theta_{\mathrm{r}} \leq \pi \\ \frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{\lambda}{2}, & \text { if }-\pi \leq \theta_{\mathrm{r}} \leq 0\end{cases} \end{aligned}$
Positions of voltage minima (also positions of first current maxima) Position of first minimum (also position of first current maximum)	$\begin{aligned} & l_{\min }=\frac{\theta_{\mathrm{T}} \lambda}{4 \pi}+\frac{(2 n+1) \lambda}{4}, \quad n=0,1,2, \ldots \\ & l_{\min }=\frac{\lambda}{4}\left(1+\frac{\theta_{\mathrm{r}}}{\pi}\right) \end{aligned}$
Input impedance	$Z_{\text {in }}=Z_{0}\left(\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right)$
Positions at which $Z_{\text {in }}$ is real	at voltage maxima and minima
$Z_{\text {in }}$ at voltage maxima	$Z_{\text {in }}=Z_{0}\left(\frac{1+\|\Gamma\|}{1-\|\Gamma\|}\right)$
$Z_{\text {in }}$ at voltage minima	$Z_{\text {in }}=Z_{0}\left(\frac{1-\|\Gamma\|}{1+\|\Gamma\|}\right)$
$Z_{\text {in }}$ of short-circuited line	$Z_{\text {in }}^{\text {sc }}=j Z_{0} \tan \beta l$
$Z_{\text {in }}$ of open-circuited line	$Z_{\text {in }}^{\text {OC }}=-j Z_{0} \cot \beta l$
$Z_{\text {in }}$ of line of length $l=n \lambda / 2$	$Z_{\text {in }}=Z_{\mathrm{L}}, \quad n=0,1,2, \ldots$
$Z_{\text {in }}$ of line of length $l=\lambda / 4+n \lambda / 2$ $Z_{\text {in }}$ of matched line	$\begin{aligned} & Z_{\text {in }}=Z_{0}^{2} / Z_{\mathrm{L}}, \quad n=0,1,2, \ldots \\ & Z_{\text {in }}=Z_{0} \end{aligned}$
$\left\|V_{0}^{+}\right\|=$amplitude of incident wave, $\Gamma=\|\Gamma\| e^{j \theta_{\mathrm{r}}}$ with $-\pi<\theta_{\mathrm{r}}<\pi ; \theta_{\mathrm{r}}$ in radians.	

$$
\begin{gathered}
\Gamma_{L}=\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \\
\Gamma_{i n}=\frac{Z_{i n}-Z_{0}}{Z_{i n}+Z_{0}}=\Gamma_{L} e^{-j 2 \beta l}
\end{gathered}
$$

$$
S=\frac{1+|\Gamma|}{1-|\Gamma|}
$$

Table 3-1: Summary of vector relations.

	Cartesian Coordinates	Cyindricai Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, ϕ, z	R, θ, ϕ
Vector representation, $\mathbf{A}=$	$\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{r}} A_{r}+\hat{\boldsymbol{\phi}} A_{\phi}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{R}} A_{R}+\hat{\boldsymbol{\theta}} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}$
Magnitude of $\mathbf{A},\|A\|=$	$\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$	$\sqrt{A_{r}^{2}+A_{\phi}^{2}+A_{z}^{2}}$	$\sqrt{A_{R}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}$
Position vector $\overrightarrow{O P_{1}}=$	$\begin{aligned} & \hat{\mathbf{x}} x_{1}+\hat{\mathbf{y}} y_{1}+\hat{\mathbf{z}} z_{1}, \\ & \text { for } P\left(x_{1}, y_{1}, z_{1}\right) \end{aligned}$	$\begin{gathered} \hat{\mathbf{r}} r_{1}+\hat{\mathbf{z}} z_{1}, \\ \text { for } P\left(r_{1}, \phi_{1}, z_{1}\right) \end{gathered}$	$\begin{gathered} \hat{\mathbf{R}} R_{1}, \\ \text { for } P\left(R_{1}, \theta_{1}, \phi_{1}\right) \end{gathered}$
Base vectors properties	$\begin{aligned} & \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ & \hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}=0 \\ & \hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}} \\ & \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ & \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \end{aligned}$	$\begin{aligned} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{r}} \cdot \hat{\boldsymbol{\phi}}=\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=0 \\ \hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{z}} \\ \hat{\phi} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}}=\hat{\boldsymbol{\phi}} \end{aligned}$	$\begin{gathered} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}}=\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}}=\hat{\phi} \cdot \hat{\phi}=1 \\ \mathbf{\mathbf { R }} \cdot \hat{\theta}=\hat{\theta} \cdot \hat{\phi}=\hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}}=0 \\ \hat{\mathbf{R}} \times \hat{\boldsymbol{\theta}}=\hat{\phi} \\ \hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{R}} \\ \hat{\boldsymbol{\phi}} \times \hat{\mathbf{R}}=\hat{\theta} \end{gathered}$
Dot product, $\mathbf{A} \cdot \mathbf{B}=$	$A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$	$A_{r} B_{r}+A_{\phi} B_{\phi}+A_{z} B_{z}$	$A_{R} B_{R}+A_{\theta} B_{\theta}+A_{\phi} B_{\phi}$
Cross product, $\mathbf{A} \times \mathbf{B}=$	$\left\|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{z} \\ B_{r} & B_{\phi} & B_{z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{R}} & \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\phi}} \\ A_{R} & A_{\theta} & A_{\phi} \\ B_{R} & B_{\theta} & B_{\phi}\end{array}\right\|$
Differential length, $d \mathbf{l}=$	$\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z$	$\hat{\mathbf{r}} d r+\hat{\boldsymbol{\phi}} r d \phi+\hat{\mathbf{z}} d z$	$\hat{\mathbf{R}} d R+\hat{\theta} R d \theta+\hat{\phi} R \sin \theta d \phi$
Differential surface areas	$\begin{aligned} & d \mathbf{s}_{x}=\hat{\mathbf{x}} d y d z \\ & d \mathbf{s}_{y}=\hat{\mathbf{y}} d x d z \\ & d \mathbf{s}_{z}=\hat{\mathbf{z}} d x d y \end{aligned}$	$\begin{aligned} d \mathbf{s}_{r} & =\hat{\mathbf{r}} d \phi d z \\ d \mathbf{s}_{\phi} & =\hat{\phi} d r d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} r d r d \phi \end{aligned}$	$\begin{aligned} d \mathbf{s}_{R} & =\hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi \\ d \mathbf{s}_{\theta} & =\hat{\boldsymbol{\theta}} R \sin \theta d R d \phi \\ d \mathbf{s}_{\phi} & =\hat{\boldsymbol{\phi}} R d R d \theta \end{aligned}$
Differential volume, $d \mathcal{\nu}=$	$d x d y d z$	$r . d r d \phi d z$	$R^{2} \sin \theta d R d \theta d \phi$

GRADIENT, DIVERGENCE, CURL, \& LAPLACIAN OPERATORS

 CARTESIAN (RECTANGULAR) COORDINATES $(x, y, z)$$\nabla V=\hat{\mathbf{x}} \frac{\partial V}{\partial x}+\hat{\mathbf{y}} \frac{\partial V}{\partial y}+\hat{\mathbf{z}} \frac{\partial V}{\partial z}$
$\nabla \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{y} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z}\end{array}\right|=\hat{\mathbf{x}}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\hat{\mathbf{y}}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\hat{\boldsymbol{z}}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)$
$\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$

CYLINDRICAL COORDINATES (r, ϕ, z)

$\nabla V=\hat{\mathbf{r}} \frac{\partial V}{\partial r}+\hat{\phi} \frac{1}{r} \frac{\partial V}{\partial \phi}+\hat{\mathbf{z}} \frac{\partial V}{\partial z}$
$\nabla \cdot \mathbf{A}=\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}=\frac{1}{r}\left|\begin{array}{ccc}\hat{\mathbf{r}} & \hat{\phi} r & \hat{\mathbf{z}} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{r} & r A_{\phi} & A_{z}\end{array}\right|=\hat{\mathbf{r}}\left(\frac{1}{r} \frac{\partial A_{z}}{\partial \dot{\phi}}-\frac{\partial A_{\phi}}{\partial z}\right)+\hat{\phi}\left(\frac{\partial A_{r}}{\partial z}-\frac{\partial A_{z}}{\partial r}\right)+\hat{\mathbf{z}} \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{\varphi}\right)-\frac{\partial A_{r}}{\partial \phi}\right]$
$\nabla^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$

SPHERICAL COORDINATES $(R, \theta, 0)$

$$
\begin{aligned}
\nabla V & =\hat{\mathbf{R}} \frac{\partial V}{\partial R}+\hat{\theta} \frac{1}{R} \frac{\partial V}{\partial \theta}+\hat{\phi} \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi} \\
\nabla \cdot \mathbf{A} & =\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} A_{R}\right)+\frac{1}{R \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{R \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \\
\nabla \times \mathbf{A} & =\frac{1}{R^{2} \sin \theta}\left|\begin{array}{ccc}
\hat{\mathbf{R}} & \hat{\theta} R & \hat{\phi} R \sin \theta \\
\frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
A_{R} & R A_{\theta} & (R \sin \theta) A_{\phi}
\end{array}\right| \\
& =\hat{\mathbf{R}} \frac{1}{R \sin \theta}\left[\frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)-\frac{\partial A_{\theta}}{\partial \phi}\right]+\hat{\theta} \frac{1}{R}\left[\frac{1}{\sin \theta} \frac{\partial A_{R}}{\partial \phi}-\frac{\partial}{\partial R}\left(R A_{\phi}\right)\right]+\hat{\phi} \frac{1}{R}\left[\frac{\partial}{\partial R}\left(R A_{\theta}\right)-\frac{\partial A_{R}}{\partial \theta}\right] \\
\nabla^{2} V & =\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}
\end{aligned}
$$

