LECTURE}

ELC 3314 ELECTRONIC DESIGN
FALL 2013

Lectures: TR 9:30 – 10:45, Rogers 106
Instructor: Dr. Charles Baylis
Office: Rogers 300C
Office Hours (subject to change): TR 11:00 – 12:00, TR 2:00 – 3:00, or by appointment
E-mail: Charles_Baylis@baylor.edu
Course Website: http://web.ecs.baylor.edu/faculty/baylis. Students are responsible to check this site frequently as it will be the primary out-of-class communication method.
Prerequisites: CHE 1301: Basic Principles of Modern Chemistry I, ELC 2330: Electrical Circuit Theory, ELC 2130: Electrical Circuit Laboratory
Corequisites: ELC 3335: Signals and Systems, ELC 3114: Electronic Design Laboratory
Objective: This course provides information in the analysis and design of amplifier circuits and the related electronic components, including operational amplifiers, diodes, bipolar transistors, and field effect transistors. Single-stage and differential amplifier design are also covered. Frequency response of electronic circuits is explored.
Grading: Two tests and a cumulative final exam will be given. The format of these tests and specific dates will be announced in advance of the tests. Homework will be assigned for each lecture but will not be collected. A quiz will be given each Tuesday covering the material from the previous week. The lowest quiz score will be dropped. A weekly laboratory session will cover measurement and simulation topics related to the course and will factor significantly into the final grade of the class.

Tentative Grading Breakdown:
Test 1 25%
Test 2 25%
Final Exam 30%
Quizzes/Assignments 20%

A typical grading scale will be used:
90-100 A
88-90 B+
80-88 B
78-80 C+
70-78 C
60-70 D
Below 60 F

No minus grades will be given.

Attendance: Students are expected to attend all class meetings. Any student who has attended less than 75 percent of the class meetings will receive a grade of “F” in the course. Both excused and unexcused absences are used in this calculation.

Missed Assignments: If no arrangement is made in advance with the instructor, students missing a test or quiz may be given, at the option of the instructor, a zero on the test or assignment. Students anticipating the need to take a test or quiz at a time other than that scheduled or to turn in an assignment late must make arrangements with the instructor in advance. In an emergency where advance notification is impossible, appropriate documentation supporting the excuse should be provided.
Religious Events: Students who anticipate being absent from class due to a major religious observance must provide written notice of the date(s) and event(s) to the instructor by the second class meeting.

Registration: Assignments of students not on the official class roll will be discarded without grading.

Appeal of Assignment Grades: Any student wishing to appeal a grade on an individual assignment must appeal that grade to the instructor, in writing, within one week following the return of the graded assignment to the student. Any appeals for grade changes outside of this one-week window will be disregarded.

Academic Dishonesty: Rules for academic honesty in this course are as follows:

- Tests and Quizzes: No collaboration whatsoever is allowed on any of the tests or quizzes.
- Projects: All projects are to be completed individually. Discussion of ideas and implementation methods is acceptable and encouraged; however, all programming, circuit design, and problem solving related to the projects should ultimately be completed individually.

Any student found in violation of this policy may be given an “F” for the course at the option of the instructor and at minimum will be given a zero for the assignment. It is the responsibility of each student to understand and follow this policy.

Computer Requirements: All students should have access to a computer running PSPICE. This software is available in the Rogers open-access computer laboratories. Use of software programs may be required to complete assignments throughout the semester.