Course Schedule and	Assignments	for FI	C 3314	Spring	2020
Course Schedule and	Assignments	IOL FT	C 3314 -	spring	2020

		_		~pring		
Date	Day	Lect.	Lecture Topics	Chapter	Pages	Problems
1/14	Т	1	Introduction/Preliminaries, Electronic Systems, The Design Process, Integrated	1	1-22	1.15, 1.16, 1.17, 1.18
			Circuits Basic Amplifier Concepts			
1/16	D	2	Cosoded Amelifan Down Sumpling and Efficiency Decided Notation Amelifan	1	22.52	1 21 1 27 1 21 1 28 1 42 1 45 1 62
1/10	ĸ	2	Cascaded Ampliners, Power supplies and Efficiency, Decider Notation, Amplifier	1	23-33	1.21, 1.27, 1.51, 1.56, 1.42, 1.45, 1.05
			Models, Ideal Amplifiers, Amplifier Frequency Response, Differential Amplifiers	-		
1/21	Т	3	QUIZ 1, Ideal Operational Amplifier, Summing-Point Constraint, Inverting	2	61-74	2.10, 2.14, 2.18, 2.25
			Amplifier, Noninverting Amplifier			
1/23	R	4	Op-Amp Imperfections in the Linear Range of Operation	2	82-89	2.45
1/28	Т	5	OUIZ 2 Large-Signal Operation DC Imperfections	2	89-100	2 51 2 58
1/20	1	5	QUE 2, Earge-Signal Operation, De Imperfections	2	07-100	2.51, 2.56
1 /2 0	-			-	100 101	
1/30	R	6	Collection of Amplifier Circuits, Integrators and Differentiators	2	108-121	-
2/4	Т	7	QUIZ 3, Diode Characteristics, Load-Line Analysis, Ideal Diode Model	3	132-139	3.10, 3.15, 3.16, 3.17
2/6	R	8	Rectifier Circuits, Wave-Shaping Circuits, Diode Logic Circuits, Voltage-Regulator	3	139-156	3.20, 3.24
			Circuits			
2/11	т	0	OUIZ 4 Linear Small Signal Equivalent Circuits Basic Semiconductor Concents	3	156 160	2 51 2 56 2 58
2/11	1 D	9	QUE 4, Enteal Shah-Signal Equivalent Circuits, Basic Senteonductor Concepts	3	150-109	2.51, 3.50, 3.58
2/13	K	10	Physics of the Junction Diode, Switching and High-Frequency Behavior	3	169-1/4	3./1, 3./2, 3.8/
2/18	Т	11	QUIZ 5, Basic Operation of the <i>npn</i> Bipolar Junction Transistor, Load-Line	4	212-231	4.5, 4.10, 4.11, 4.14
			Analysis of a Common-Emitter Amplifier, The pnp Bipolar Junction Transistor			
2/20	R		TEST 1: Chapters 1, 2, and 3, Closed Book, Closed Notes			
2/25	Т	12	Large-Signal DC Circuit Models, Large-Signal DC Analysis of BIT Circuits (Part	4	232-248	4 28 4 33
2,20		12	1)	·	232 210	1.20, 1.55
2/27	D	12	1) Lana Simul DC Analusia of DIT Cinusita (Dart 2)	4	240 260	4 24 4 28
2/2/	K	15	Large-Signal DC Analysis of BJ1 Circuits (Part 2)	4	248-308	4.34, 4.38
3/3	Т	14	QUIZ 6, Small-Signal Equivalent Circuits, Common-Emitter Amplifier	5	287-334	4.42, 4.45
3/5	R	15	Emitter Follower	5	414-432	4.51, 4.53, 4.60
3/10,	T,R		NO CLASS: Spring Break			
12						
3/17	Т	16	OUIZ 7 NMOS Transistors Load-Line Analysis Bias Circuits Small-Signal	5	287-313	53 56 521 523 524
5/1/		10	Equivalent Circuits	5	207 515	5.5, 5.6, 5.21, 5.25, 5.21
2/10	D	17		7	212 224	5 29 5 40 5 47
3/19	K	1/	Common-Source Amplifier, Source Follower, JFE1s/Depletion-Mode	/	313-334	5.38, 5.40, 5.47
			MOSFETs/p-Channel Devices			
3/24	Т	18	QUIZ 8, IC Biasing with BJTs, IC Biasing with FETs	7	414-432	7.15, 7.16, 7.31
3/26	R	19	Large-Signal Analysis of the Emitter-Coupled Differential Pair	7	432-443	7.42
3/31	Т	20	OUIZ 9 Small-Signal Equivalent-Circuit Analysis Design of the Emitter-Counled	7	443-465	7 49 7 58 7 59
5/51	1	20	Differential Amplifier Source Counted Differential Dair	,		7.50, 7.50
4/0	D					
4/2	K		IEEE Texas Symposium on Wireless and Microwave Circuits and Systems	-	-	Summary Assignment
4/7	Т	21	Bode Plots, The FET Common-Source Amplifier at High Frequencies, Miller Effect	8	484-510	8.7, 8.8, 8.12, 8.14, 8.20, 8.26
4/9	R		TEST 2, Chapters 4, 5, and 7, Closed Book, Closed Notes, Formula Sheet Provided			
4/14	Т	22	OUIZ 10. Hybrid-Pi Model for the BJT. Common-Emitter Amplifiers at High	8	510-523	8.38.8.40
	-		Frequencies	Ŭ		
4/16	D	22	Common Page Cagoode and Differential Amplifiers Emitter Followers Low	0	522 545	
4/10	к	23	Common-Base, Cascode, and Differential Amplifiers, Emitter Followers, Low-	0	525-545	
			Frequency Response of RC-Coupled Amplifiers Effects of Feedback on Gain,			
			Reduction of Nonlinear Distortion and Noise			
4/21	Т		NO CLASS: Diadeloso			
4/23	R	24	QUIZ 11, Input and Output Impedances, Practical Feedback Networks, Design of	9	555-602	9.5, 9.6
			Feedback Amplifiers, Transient and Frequency Response			
4/28	Т	25	OUIZ 12 Effects of Feedback on Pole Locations Gain Margin and Phase Margin	9	602-622	
1/20	P	25	Dominant-Pole Compensation Oscillator Dringinles Wien Bridge Oscillator	0	622.620	
- JU		20	Dominant-1 of Compensation, Osemator 1 Interpres, with-Druge Osemator,	,	626 617	
<i>с / с</i>			REVIEW INFTINIAL EXAMINE		030-04/	
5/7	R		FINAL EXAM: Cumulative, 4:30 – 6:30 p.m., Closed Book/Closed Notes, 2 hours			