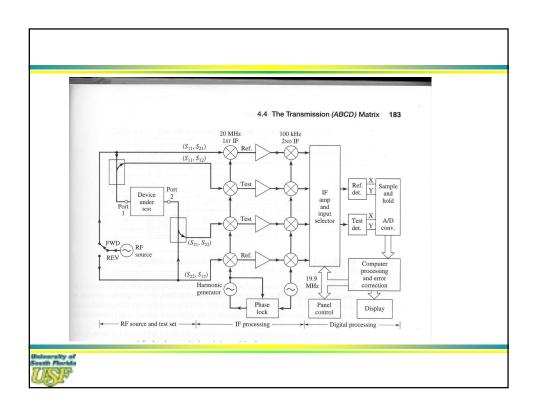
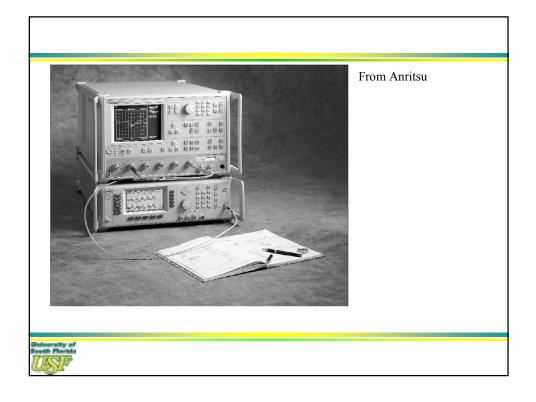
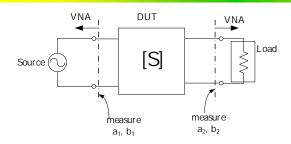
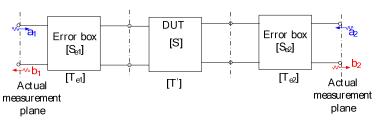
RF/Microwave Circuits I

VNA Calibration Fall 2007

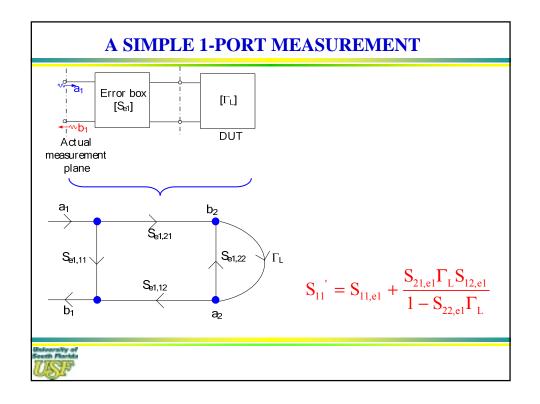



VNA & Calibration


- Vector Network Analyzer → Measures amplitude and phase of
 - Reference, reflected, and transmitted signal to find [S]
- Basic Components of VNA
 - Synthesized swept signal RF source
 - Test set (signal routing from/to source, DUT, and internal IF circuitry)
 - IF circuitry (down convert RF to IF, e.g., 100KHz) (page 183, 3rd edition)
 - Digital processors (A/D conversion, amp & phase measurements, etc)



- In reality, there is much hardware within VNA that affects a₁, b₁, etc
- Measurements are determined after IF and digital processing
- ∴ To determine [S] of the DUT, we need information about signals at DUT ports → have to calibrate/remove all VNA effects


• First step: Determine how to represent these complex VNA effects. This is "error modeling"

- [S] → scattering matrix
- $[T] \rightarrow \text{transmission matrix (e.g., [ABCD])}$
- Error box networks that include internal VNA effects (couplers, switches, IF and DSP circuits, etc) and possibly external cables etc
 - different "error models" have different "error boxes"

Second Step: Determine values for error box parameters (i.e., $[S_{e1}]$, $[S_{e2}]$ or $[T_{e1}]$, $[T_{e2}]$). Determining the error box parameters is called "calibration" DUT Error box Error box [S] [S₂] $[S_{e1}]$ [T@] [T_{e1}] [T] Actual measurement measurement plane This what we measure (or raw-measured data) $\left[T' \right] = \left[T_{e1} \right]^{-1} \left[T_{m} \right] \left[T_{e2} \right]^{-1}$ Error corrected or "calibrated data" Determined when calibration is performed

Goal: Find [S_{e1}] (i.e., "calibrate" the system)

- You can select different Γ_L (cal stds) and measure S_{11}
- How?
- (i) choose $\Gamma_L = 0$ (use match load)

then
$$S_{11}' = S_{el,11}$$

$$S_{11}' = S_{11,el} + \frac{S_{2l,el}\Gamma_L S_{12,el}}{1 - S_{22,el}\Gamma_L}$$

(ii)

$$(1 - \Gamma_{L} S_{el,22}) (S_{11} - S_{el,11}) = (S_{el,21}) (\Gamma_{L}) (S_{el,12})$$

$$U_{1} \cdot K = U_{2}$$

$$U = \text{unknown}$$

$$K = \text{known}$$

1-port calibration (cont'd)

```
(iii)
```

choose 2 more known $\Gamma_L^{'s}$ (e.g., Γ_L = 1 (*open*) and -1 (*short*))

- \Rightarrow find U₁ and U₂ (2 equations and 2 unknowns)
- (iv)

once U_1 is known, find $S_{e1,22}$

(v)

also know $(S_{e1,21} \cdot S_{e1,12}) \Rightarrow$ you only need to know the product

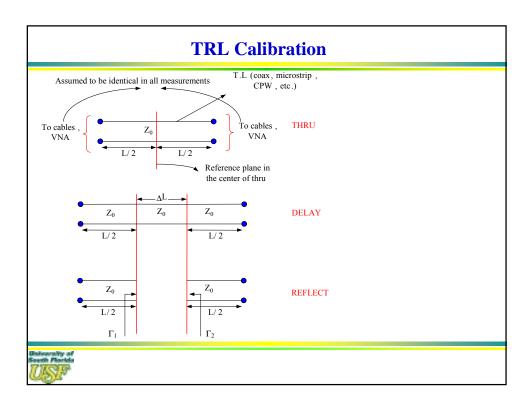
Now that you know $\left[S_{e1}^{}\right]$

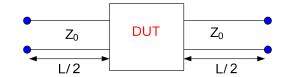
$$\Gamma_{\rm L} = \frac{\left({\rm S_{1,1}}^{'} - {\rm S_{e1,11}}\right)}{\left({\rm S_{e1,21}} - {\rm S_{e1,12}}\right) + {\rm \ S_{e1,22}}\left({\rm S_{11}}^{'} - {\rm S_{e1,11}}\right)}$$

Commonly Used Calibration Methods

- 1. OSL (can be used only for 1-port calibration)
 - Open, Short, Load
- 2. OSLT (2-port calibration)
 - Open, Short, Load, Thru
 - Thru is a section of matched transmission line
- 3. LRM
 - Thru <u>Line</u>, <u>Reflect</u>, <u>Matched load</u>
 - Reflect can be open or short
- 4. TRL
 - <u>Thru line</u>, <u>Reflect</u>, delay <u>Line</u>

Commonly Used Calibration Methods

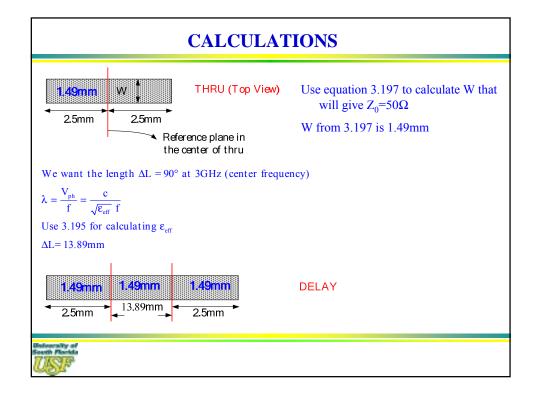

- For many calibration methods, precise knowledge of the standards (e.g., the Γ for the short) must be known
 - It won't be exactly -1!

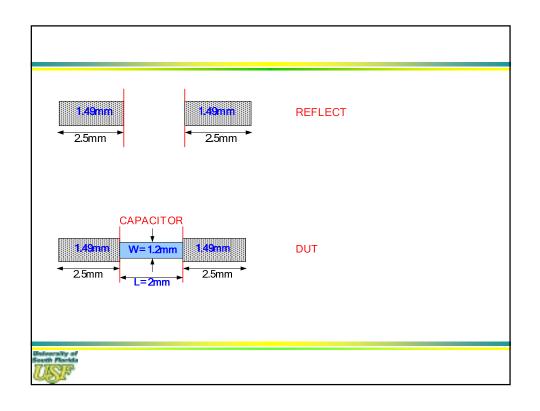

TRL Calibration

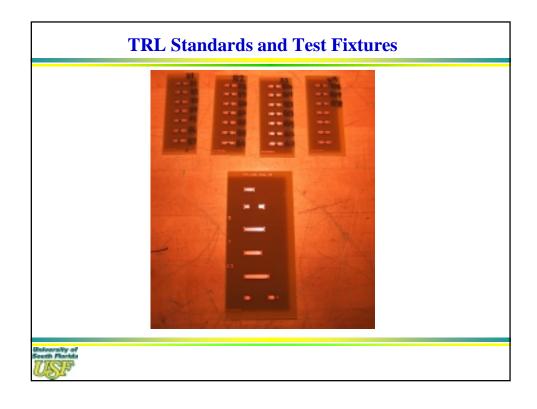
- Used for planar circuits (e.g., microstrip) this is the most accurate approach, especially at mm-wave frequencies
- Does <u>not</u> require perfect (or well known) matched loads, opens, or sorts (other methods do require) ⇒ TRL is known as "selfcalibrating"
- How to construct TRL calibration lines for measuring a DUT...

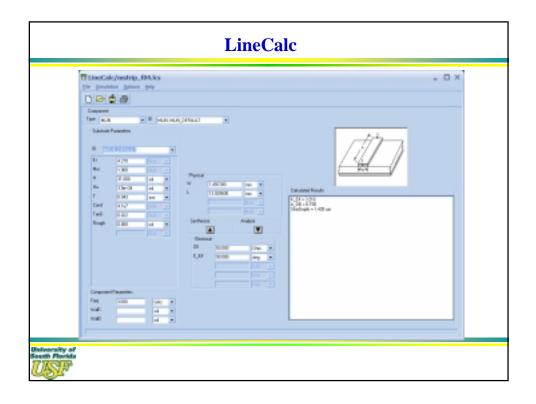
TO MEASURE DUT

DESIGN RULES


- Z₀ must be identical for all standards and DUT
- Theoretically, any L > 0 is acceptable
- Ideally, $\Delta L = 90^{\circ}$ at center frequency
 - Calibration is typically valid from f_1 to f_2 , when
 - f_1 when $\Delta L = 20^{\circ}$
 - f_2 when $\Delta L = 160^{\circ}$
- Reflect standards do not have to be perfect opens or shorts, but Γ_1 has to be identical to Γ_2
- Z_0 does not have to be 50Ω , but its value does serve as the reference impedance for the calculated [S] matrix




DESIGN TRL STD's FROM 1-6GHz AND MEASURE A CHIP CAPACITOR


- We need to know the following:
 - Capacitor size, substrate properties on which capacitor will be mounted/measured, what kind of TL (microstrip, CPW, etc)
 - Frequency range
- Capacitor dimensions from the manufacturer data sheet is
 - 2mm × 1.2mm
 - Given that the substrate is 31-mil FR-4 (ε_r =4.27)
- Choose a value of "L", this is the length of "thru". There is no equation for choosing L
 - Let's say L=5mm

