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19C h a p t e r

State-Variable
Analysis

Specific goals and objectives of this chapter include:

■ Introducing the concept of state variables and normal-form equations

■ Learning how to write a complete set of normal-form equations for a
given circuit

■ Matrix-based solution of the circuit equations

■ Development of a general technique applicable to higher-order
problems ■

19.1 Introduction
Up to this point, we have seen several different methods by which circuits
might be analyzed. The resistive circuit came first, and for it we wrote a set
of algebraic equations, often cast in the form of nodal or mesh equations.
However, in Appendix 1 we learn that we can choose other, more convenient
voltage or current variables after drawing an appropriate tree for the network.
The tree sprouts up again in this chapter, in the selection of circuit variables.

We next added inductors and capacitors to our networks, and this produced
equations containing derivatives and integrals with respect to time. Except
for simple first- and second-order systems that either were source-free or
contained only dc sources, we did not attempt solving these equations. The
results we obtained were found by time-domain methods. Subsequently, we
explored the use of phasors to determine the sinusoidal steady-state response
of such circuits, and a little later on we were introduced to the concept of
complex frequency and the Laplace transform method.

In this last chapter, we return to the time domain and introduce the use of
state variables. Once again we will not obtain many explicit solutions for
circuits of even moderate complexity, but we will write sets of equations
compatible with numerical analysis techniques.
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19.2 State Variables and Normal-Form
Equations

State-variable analysis, or state-space analysis, as it is sometimes called, is a
procedure that can be applied both to linear and, with some modifications, to
nonlinear circuits, as well as to circuits containing time-varying parameters,
such as the capacitance C = 50 cos 20t pF. Our attention, however, will be
restricted to time-invariant linear circuits.

We introduce some of the ideas underlying state variables by looking at a
general RLC circuit drawn in Fig. 19.1. When we write equations for this
circuit, we could use nodal analysis, the two dependent variables being the
node voltages at the central and right nodes. We could also opt for mesh
analysis and use two currents as the variables, or, alternatively, we could
draw a tree first and then select a set of tree-branch voltages or link currents
as the dependent variables. It is possible that each approach could lead to
a different number of variables, although two seems to be the most likely
number for this circuit.

Figure 19.1
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A four-node RLC circuit.

The set of variables we will select in state-variable analysis is a hybrid set
that may include both currents and voltages. They are the inductor currents
and the capacitor voltages. Each of these quantities may be used directly to
express the energy stored in the inductor or capacitor at any instant of time.
That is, they collectively describe the energy state of the system, and for that
reason, they are called the state variables.

Let us try to write a set of equations for the circuit of Fig. 19.1 in terms of
the state variables iL, vC1, and vC2, as defined on the circuit diagram. The
method we use will be outlined more formally in the following section, but
for the present let us try to use KVL once for each inductor, and KCL once
for each capacitor.

Here we are using a “prime” symbol to denote
a derivative with respect to time.

Beginning with the inductor, we set the sum of voltages around the lower
left mesh equal to zero:

Li ′L + vC2 − vs = 0 [1]

We presume that the source voltage vs and the source current is are known,
and we therefore have one equation in terms of our chosen state variables.

Next, we consider the capacitor C1. Since the left terminal of C1 is also one
terminal of a voltage source, it will become part of a supernode. Therefore,
we select the right terminal of C1 as the node to which we apply KCL. The
current through the capacitor branch is C1v

′
C1, the upward source current

is is , and the current in R is obtained by noting that the voltage across R,
positive reference on the left, is (vC2 − vs + vC1) and, therefore, the current
to the right in R is (vC2 − vs + vC1)/R. Thus,

C1v
′
C1 +

1

R
(vC2 − vs + vC1)+ is = 0 [2]

Again we have been able to write an equation without introducing any new
variables, although we might not have been able to express the current
through R directly in terms of the state variables if the circuit had been
any more complicated.
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Finally, we apply KCL to the upper terminal of C2:

C2v
′
C2 − iL +

1

R
(vC2 − vs + vC1) = 0 [3]

Equations [1] to [3] are written solely in terms of the three state variables,
the known element values, and the two known forcing functions. They are
not, however, written in the standardized form which state-variable analysis
demands. The state equations are said to be in normal form when the deriva-
tive of each state variable is expressed as a linear combination of all the state
variables and forcing functions. The ordering of the equations defining the
derivatives and the order in which the state variables appear in every equa-
tion must be the same. Let us arbitrarily select the order iL, vC1, vC2, and
rewrite Eq. [1] as

i ′L = −
1

L
vC2 + 1

L
vs [4]

Then Eq. [2] is rewritten as

v′C1 = −
1

RC1
vC1 − 1

RC1
vC2 + 1

RC1
vs − 1

C1
is [5]

while Eq. [3] becomes

v′C2 =
1

C2
iL − 1

RC2
vC1 − 1

RC2
vC2 + 1

RC2
vs [6]

Note that these equations define, in order, i ′L, v′C1, and v′C2, with a corre-
sponding order of variables on the right sides, iL, vC1, and vC2. The forcing
functions come last and may be written in any convenient order.

As another example of the determination of a set of normal-form equations,
we look at the circuit shown in Fig. 19.2a. Since the circuit has one capacitor
and one inductor, we expect two state variables, the capacitor voltage and
the inductor current. To facilitate writing the normal-form equations, let us
construct a tree for this circuit which follows all the rules for tree construction
discussed in Appendix 1 and in addition requires all capacitors to be located
in the tree and all inductors in the cotree. This is usually possible and
it leads to a normal tree. In those few exceptional cases where it is not
possible to draw a normal tree, we use a slightly different method which will
be considered at the end of Sec. 19.3. Here, we are able to placeC in the tree
and L and is in the cotree, as shown in Fig. 19.2b. This is the only normal
tree possible for this circuit. The source quantities and the state variables
are indicated on the tree and cotree.

Figure 19.2
7 �

5 �0.4 F 2 His

(a)

vC

+

–

is

iL

(c)

vC

5

7iL+ –

vC

+

–

is

iL

(b)

(a) An RLC circuit requiring two state variables.
(b) A normal tree showing the state variables vC and
iL. (c) The current in every link and the voltage
across every tree branch is expressed in terms of the
state variables.

Next, we determine the current in every link and the voltage across each tree
branch in terms of the state variables. For a simple circuit such as this, it is
possible to do so by beginning with any resistor for which either the current
or the voltage is obvious. The results are shown on the tree in Fig. 19.2c.

We may now write the normal-form equations by invoking KCL at the upper
terminal of the capacitor:

0.4v′C + 0.2vC − is + iL = 0
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or, in normal form,

v′C = −0.5vC − 2.5iL + 2.5is [7]

Around the outer loop, we have

2i ′L − vC + 7iL = 0

or
i ′L = 0.5vC − 3.5iL [8]

Equations [7] and [8] are the desired normal-form equations. Their solution
will yield all the information necessary for a complete analysis of the given
circuit. Of course, explicit expressions for the state variables can be obtained
only if a specific function is given for is(t). For example, it will be shown
later that if

is(t) = 12+ 3.2e−2t u(t) A [9]

then
vC(t) = 35+ (10e−t − 12e−2t + 2e−3t )u(t) V [10]

and
iL(t) = 5+ (2e−t − 4e−2t + 2e−3t )u(t) A [11]

The solutions, however, are far from obvious, and we will develop the tech-
nique for obtaining them from the normal-form equations in Sec. 19.7.

Practice
19.1. Write a set of normal-form equations for the circuit shown in Fig. 19.3. Order

the state variables as iL1, iL2, and vC .

Figure 19.3
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Ans: i′L1 = −0.8iL1 + 0.8iL2 − 0.2vC + 0.2vs ; i′L2 = 2iL1 − 2iL2; v′C = 10iL1.

19.3 Writing a Set of Normal-Form
Equations

In the two examples considered in the previous section, the methods whereby
we obtained a set of normal-form equations may have seemed to be more of
an art than a science. In order to bring a little order into our chaos, let’s try
to follow the procedure used when we were studying nodal analysis, mesh
analysis, and the use of trees in general loop and general nodal analysis. We
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seek a set of guidelines that will systematize the procedure. Then we will
apply these rules to three new examples, each a little more involved than the
preceding one.

Here are the six steps that we have been following:

1. Establish a normal tree. Place capacitors and voltage sources in the
tree, and inductors and current sources in the cotree; place control
voltages in the tree and control currents in the cotree if possible. More
than one normal tree may be possible. Certain types of networks do
not permit any normal tree to be drawn; these exceptions are
considered at the end of this section.

2. Assign voltage and current variables. Assign a voltage (with polarity
reference) to every capacitor and a current (with arrow) to every
inductor; these voltages and currents are the state variables. Indicate
the voltage across every tree branch and the current through every link
in terms of the source voltages, the source currents, and the state
variables, if possible; otherwise, assign a new voltage or current
variable to that resistive tree branch or link.

3. Write the C equations. Use KCL to write one equation for each
capacitor. Set Cv′C equal to the sum of link currents obtained by
considering the node (or supernode) at either end of the capacitor. The
supernode is identified as the set of all tree branches connected to that
terminal of the capacitor. Do not introduce any new variables.

4. Write the L equations. Use KVL to write one equation for each
inductor. Set Li ′L equal to the sum of tree-branch voltages obtained by
considering the single closed path consisting of the link in which L
lies and a convenient set of tree branches. Do not introduce any new
variables.

5. Write the R equations (if necessary). If any new voltage variables
were assigned to resistors in step 2, use KCL to set vR/R equal to a
sum of link currents. If any new current variables were assigned to
resistors in step 2, use KVL to set iRR equal to a sum of tree-branch
voltages. Solve these resistor equations simultaneously to obtain
explicit expressions for each vR and iR in terms of the state variables
and source quantities.

6. Write the normal-form equations. Substitute the expressions for each
vR and iR into the equations obtained in steps 3 and 4, thus eliminating
all resistor variables. Put the resultant equations in normal form.

EXAMPLE 19.1

Obtain the normal-form equations for the circuit of Fig. 19.4a, a four-node circuit
containing two capacitors, one inductor, and two independent sources.

Following step 1, we draw a normal tree. Note that only one such tree is possible
here, as shown in Fig. 19.4b, since the two capacitors and the voltage source must
be in the tree and the inductor and the current source must be in the cotree.

We next define the voltage across the 1
6 -F capacitor as vC1, the voltage across the

1
7 -F capacitor as vC2, and the current through the inductor as iL. The source voltage
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Figure 19.4
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(a) A given circuit for which normal-form equations are to be
written. (b) Only one normal tree is possible. (c) Tree-branch
voltages and link currents are assigned.

is indicated across its tree branch, the source current is marked on its link, and only
the resistor link remains without an assigned variable. The current directed to the
left through that link is the voltage vC1 − vs divided by 3 �, and we thus find it
unnecessary to introduce any additional variables. These tree-branch voltages and
link currents are shown in Fig. 19.4c.

Two equations must be written for step 3. For the 1
6 -F capacitor, we apply KCL to

the central node:
v′C1

6
+ iL + 1

3
(vC1 − vs) = 0

while the right-hand node is most convenient for the 1
7 -F capacitor:

v′C2

7
+ iL + is = 0

Moving on to step 4, KVL is applied to the inductor link and the entire tree in this
case:

i ′L
5
− vC2 + vs − vC1 = 0

Since there were no new variables assigned to the resistor, we skip step 5 and simply
rearrange the three preceding equations to obtain the desired normal-form equations,

v′C1 = −2vC1 − 6iL + 2vs [12]

v′C2 = −7iL − 7is [13]

i ′L = 5vC1 + 5vC2 − 5vs [14]
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The state variables have arbitrarily been ordered as vC1, vC2, and iL. If the order iL,
vC1, vC2 had been selected instead, the three normal-form equations would be

i ′L = 5vC1 + 5vC2 − 5vs

v′C1 = −6iL − 2vC1 + 2vs

v′C2 = −7iL − 7is

Note that the ordering of the terms on the right-hand sides of the equations has been
changed to agree with the ordering of the equations.

EXAMPLE 19.2

Write a set of normal-form equations for the circuit of Fig. 19.5a.

Figure 19.5
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(a) The given circuit. (b) One of many possible normal trees. (c) The assigned
voltages and currents.

The circuit contains several resistors, and this time it will be necessary to introduce
resistor variables. Many different normal trees can be constructed for this network,
and it is often worthwhile to sketch several possible trees to see whether resistor
voltage and current variables can be avoided by a judicious selection. The tree we
shall use is shown in Fig. 19.5b. The state variables vC and iL and the forcing
functions vs and is are indicated on the graph.

Although we might study this circuit and the tree for a few minutes and arrive at
a method to avoid the introduction of any new variables, let us plead temporary
stupidity and assign the tree-branch voltage vR and link current iR for the 1-� and
3-� branches, respectively. The voltage across the 2-� resistor is easily expressed
as 2iL, while the downward current through the 6-� resistor becomes (vR − vC)/6.
All the link currents and tree-branch voltages are marked on Fig. 19.5c.

The capacitor equation may now be written

v′C
9
= iR + iL − is + vR − vC

6
[15]
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and that for the inductor is

2
9 i
′
L = −vC + vR − 2iL [16]

We begin step 5 with the 1-� resistor. Since it is in the tree, we must equate its
current to a sum of link currents. Both terminals of the capacitor collapse into a
supernode, and we have

vR

1
= is − iR − iL − vR − vC

6

The 3-� resistor is next, and its voltage may be written as

3iR = −vC + vR − vs
These last two equations must now be solved simultaneously for vR and iR in terms
of iL, vC , and the two forcing functions. Doing so, we find that

vR = vC

3
− 2

3
iL + 2

3
is + 2

9
vs

iR = −2

9
vC − 2

9
iL + 2

9
is − 7

27
vs

Finally, these results are substituted in Eqs. [15] and [16], and the normal-form
equations for Fig. 19.5 are obtained:

v′C = −3vC + 6iL − 2vs − 6is [17]

i ′L = −3vC − 12iL + vs + 3is [18]

Up to now we have discussed only those circuits in which the voltage and
current sources were independent sources. At this time we will look at a
circuit containing a dependent source.

EXAMPLE 19.3

Find the set of normal-form equations for the circuit of Fig. 19.6.

The only possible normal tree is that shown in Fig. 19.6b, and it might be noted
that it was not possible to place the controlling current ix in a link. The tree-branch
voltages and link currents are shown on the linear graph, and they are unchanged
from the earlier example except for the additional source voltage, 18ix .

For the 1
6 -F capacitor, we again find that

v′C1

6
+ iL + 1

3
(vC1 − vs) = 0 [19]

Letting the dependent voltage source shrink into a supernode, we also find the rela-
tionship unchanged for the 1

7 -F capacitor,

v′C2

7
+ iL + is = 0 [20]

Our previous result for the inductor changes, however, because there is an added
branch in the tree:

i ′L
5
− 18ix − vC2 + vs − vC1 = 0
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Figure 19.6
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(a) A circuit containing a dependent voltage source. (b) The normal tree for this circuit with
tree-branch voltages and link currents assigned.

Finally, we must write a control equation that expresses ix in terms of our tree-branch
voltages and link currents. It is

ix = iL + vC1 − vs
3

and thus the inductor equation becomes

i ′L
5
− 18iL − 6vC1 + 6vs − vC2 + vs − vC1 = 0 [21]

When Eqs. [19] to [21] are written in normal form, we have

v′C1 = −2vC1 − 6iL + 2vs [22]

v′C2 = −7iL − 7is [23]

i ′L = 35vC1 + 5vC2 + 90iL − 35vs [24]

Our equation-writing process must be modified slightly if we cannot con-
struct a normal tree for the circuit, and there are two types of networks for
which this occurs. One contains a loop in which every element is a capacitor
or voltage source, thus making it impossible to place them all in the tree.
The other occurs if there is a node or supernode that is connected to the
remainder of the circuit only by inductors and current sources.

Remember, a tree, by definition, contains no
closed paths (loops), and every node must
have at least one tree branch connected to it.

When either of these events occurs, we meet the challenge by leaving a
capacitor out of the tree in one case and omitting an inductor from the
cotree in the other. We then are faced with a capacitor in a link for which
we must specify a current, or an inductor, in the tree which requires a
voltage. The capacitor current may be expressed as the capacitance times
the time derivative of the voltage across it, as defined by a sequence of tree-
branch voltages; and the inductor voltage is given by the inductance times
the derivative of the current entering or leaving the node or supernode at
either terminal of the inductor.
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EXAMPLE 19.4

Write a set of normal-form equations for the network shown in Fig. 19.7a.

Figure 19.7
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(a) A circuit for which a normal tree cannot be drawn. (b) A tree is constructed in which one inductor
must be a tree branch.

The only elements connected to the upper central node are the two inductors and the
current source, and we therefore must place one inductor in the tree, as illustrated
by Fig. 19.7b. The two forcing functions and the single state variable, the current
i1, are shown on the graph. Note that the current in the upper right-hand inductor is
known in terms of i1 and 3e−t2 A. Thus we could not specify the energy states of the
two inductors independently of each other, and this system requires only the single
state variable i1. Of course, if we had placed the 0.1-H inductor in the tree (instead
of the 0.3-H inductor), the current in the right-hand inductor would have ended up
as the single state variable.

We must still assign voltages to the remaining two tree branches in Fig. 19.7b.
Since the current directed to the right in the 0.3-H inductor is i1+3e−t2 , the voltages
appearing across the inductor and the 4-� resistor are 0.3 d(i1+3e−t2 )/dt = 0.3i ′1−
1.8te−t2 and 4i1 + 12e−t2 , respectively.

The single normal-form equation is obtained in step 4 of our procedure:

0.1i ′1 + 0.3i ′1 − 1.8te−t
2 + 4i1 + 12e−t

2 − 2t2u(t) = 0

or
i ′1 = −10i1 + e−t2 (4.5t − 30)+ 5t2u(t) [25]

Note that one of the terms on the right-hand side of the equation is proportional to
the derivative of one of the source functions.

In this example, the two inductors and the current source were all con-
nected to a common node. With circuits containing more branches and
more nodes, the connection may be to a supernode. As an indication of such
a network, Fig. 19.8 shows a slight rearrangement of two elements appearing
in Fig. 19.7a. Note that, once again, the energy states of the two inductors
cannot be specified independently; with one specified, and the source cur-
rent given, the other is then specified also. The method of obtaining the
normal-form equation is the same.

Figure 19.8

3e–t 2
 A0.1 H

0.3 H

4 Ω

+–

2t2u(t) V

The circuit of Fig. 19.7a is redrawn in such a way
as to cause the supernode containing the voltage
source to be connected to the remainder of the
network only through the two inductors and the
current source.

The exception created by a loop of capacitors and voltage sources is treated
by a similar (dual) procedure, and the wary student should have only the
most minor troubles.
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Practice
19.2. Write normal-form equations for the circuit of Fig. 19.9a.

Figure 19.9
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(b)

19.3. Write the normal-form equations for the circuit of Fig. 19.9b using the state-
variable order v1, v2, v5.

19.4. Find the normal-form equation for the circuit shown in Fig. 19.10 using the
state variable: (a) vC1; (b) vC2.

Figure 19.10
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Ans: 19.2: i′1 = −20,000i1 − 20,000i5 + 1000 cos 2t u(t); i′5 = −4000i1 − 14,000i5 +
200 cos 2t u(t) [using i1 ↓ and i5 ↓]. 19.3: v′1 = −160v1 − 100v2 − 60v5 − 140vs ; v′2 =
−50v1 − 125v2 + 75v5 − 75vs ; v′5 = −12v1 + 30v2 − 42v5 + 2vs . 19.4: v′C1 = −6.67vC1 +
6.67vs + 0.333v′s ; v′C2 = −6.67vC2 + 0.667v′s .

19.4 The Use of Matrix Notation
In the examples that we studied in the previous two sections, the state vari-
ables selected were the capacitor voltages and the inductor currents, except
for the final case, where it was not possible to draw a normal tree and only
one inductor current could be selected as a state variable. As the number of
inductors and capacitors in a network increases, it is apparent that the num-
ber of state variables will increase. More complicated circuits thus require
a greater number of state equations, each of which contains a greater array
of state variables on the right-hand side. Not only does the solution of such
a set of equations require computer assistance,1 but also the sheer effort of
writing down all the equations can easily lead to writer’s cramp.

In this section we will establish a useful symbolic notation that minimizes
the equation-writing effort.

Let us introduce this method by recalling the normal-form equations that
we obtained for the circuit of Fig. 19.6, which contained two independent
sources, vs and is . The results were given as Eqs. [22] to [24] of Sec. 19.3:

v′C1 = −2vC1 − 6iL + 2vs

v′C2 = −7iL − 7is

i ′L = 35vC1 + 5vC2 + 90iL − 35vs

[22]

[23]

[24]

1Although SPICE can be used to analyze any of the circuits we meet in this chapter, other
computer programs are used specifically to solve normal-form equations.
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Two of our state variables are voltages, one is a current, one source function
is a voltage, one is a current, and the units associated with the constants
on the right-hand sides of these equations have the dimensions of ohms, or
siemens, or they are dimensionless.

For a review of matrices and matrix notation
refer to Appendix 2.

To avoid notational problems in a more generalized treatment, we will use
the letter q to denote a state variable, a to indicate a constant multiplier of
q, and f to represent the entire forcing function appearing on the right-hand
side of an equation. Thus, Eqs. [22] to [24] become

q ′1 = a11q1 + a12q2 + a13q3 + f1 [26]

q ′2 = a21q1 + a22q2 + a23q3 + f2 [27]

q ′3 = a31q1 + a32q2 + a33q3 + f3 [28]

where

q1 = vC1 a11 = −2 a12 = 0 a13 = −6 f1 = 2vs
q2 = vC2 a21 = 0 a22 = 0 a23 = −7 f2 = −7is
q3 = iL a31 = 35 a32 = 5 a33 = 90 f3 = −35vs

We now turn to the use of matrices and linear algebra to simplify our equa-
tions and further generalize the methods. We first define a matrix q which
we call the state vector:

q(t) =




q1(t)

q2(t)
...

qn(t)


 [29]

The derivative of a matrix is obtained by taking the derivative of each element
of the matrix. Thus,

q′(t) =




q ′1(t)

q ′2(t)
...

q ′n(t)




We shall represent all matrices and vectors in this chapter by lowercase
boldface letters, such as q or q(t), with the single exception of the identity
matrix I, to be defined in Sec. 19.6. The elements of any matrix are scalars,
and they are symbolized by lowercase italic letters, such as q1 or q1(t).

We also define the set of forcing functions, f1, f2, . . . , fn, as a matrix f and
call it the forcing-function matrix:

f(t) =




f1(t)

f2(t)
...

fn(t)


 [30]

Now let us turn our attention to the coefficients aij , which represent elements
in the (n× n) square matrix a,

a =



a11 a12 · · · a1n

a21 a22 · · · a2n· · · · · · · · · · · · · · · · ·
an1 an2 · · · ann


 [31]

The matrix a is termed the system matrix.
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Using the matrices we have defined in the preceding paragraphs, we can
combine these results to obtain a concise, compact representation of the
state equations,

q′ = aq+ f [32]

The matrices q′ and f , and the matrix product aq, are all (n × 1) column
matrices.

The advantages of this representation are obvious, because a system of 100
equations in 100 state variables has exactly the same form as one equation
in one state variable.

For the example of Eqs. [22] to [24], the four matrices in Eq. [32] may be
written out explicitly as




v′C1

v′C2

i ′L


 =


 −2 0 −6

0 0 −7
35 5 90






vC1

vC2

iL


+




2vs
−7is
−35vs


 [33]

Everyone except full-blooded matrix experts should take a few minutes off
to expand Eq. [33] and then check the results with Eqs. [22] to [24]; three
identical equations should result.

What now is our status with respect to state-variable analysis? Given a
circuit, we should be able to construct a normal tree, specify a set of state
variables, order them as the state vector, write a set of normal-form equations,
and finally specify the system matrix and the forcing-function vector from
the equations.

The next problem facing us is to obtain the explicit functions of time that
the state variables represent.

Practice
19.5. (a) Using the state vector q =

[
i
v

]
, determine the system matrix and the

forcing-function vector for the circuit of Fig. 19.11. (b) Repeat for the state

vector q =
[

v

i

]
.

Figure 19.11

10 �

2 � v+ –

0.1 F

+
–

i

0.5 H 3u(t) A20u(t) V

Ans:

[ −3.33 0.3333
−1.667 −0.833

]
,

[
43.3u(t)
−8.33u(t)

]
;

[ −0.833 −1.667
0.333 −3.33

]
,

[ −8.33u(t)
43.3u(t)

]
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19.5 Solution of the First-Order
Equation

The matrix equation representing the set of normal-form equations for a
general nth-order system was obtained as Eq. [32] in the previous section,
and it is repeated here for convenience as Eq. [34]:

q′ = aq+ f [34]

The (n×n) system matrix a is composed of constant elements for our time-
invariant circuits, and q′, q, and f are all (n × 1) column matrices. We
need to solve this matrix equation for q, whose elements are q1, q2, . . . , qn.
Each must be found as a function of time. Remember that these are the state
variables, the collection of which enables us to specify every voltage and
current in the given circuit.

Probably the simplest way of approaching this problem is to recall the method
by which we solved the corresponding first-order (scalar) equation back in
Sec. 8.8. We will quickly repeat that process, but, as we do so, we should
keep in mind the fact that we are next going to extend the procedure to a
matrix equation.

If each matrix in Eq. [34] has only one row and one column, then we may
write the matrix equation as

[q ′1(t)] = [a11][q1(t)] + [f1(t)]
= [a11q1(t)] + [f1(t)]
= [a11q1(t)+ f1(t)]

and therefore, we have the first-order equation

q ′1(t) = a11q1(t)+ f1(t) [35]

or
q ′1(t)− a11q1(t) = f1(t) [36]

Equation [36] has the same form as Eq. [12] of Sec. 8.8, and we therefore
proceed with a similar method of solution by multiplying each side of the
equation by the integrating factor e−ta11 :

e−ta11q ′1(t)− e−ta11q1(t) = e−ta11f1(t)

The left-hand side of this equation is again an exact derivative, and so we
have

d

dt
[e−ta11q1(t)] = e−ta11f1(t) [37]

The order in which the various factors in Eq. [37] have been written may seem
a little strange, because a term which is the product of a constant and a time
function is usually written with the constant appearing first and the time
function following it. In scalar equations, multiplication is commutative,
and so the order in which the factors appear is of no consequence. But in
the matrix equations which we will be considering next, the corresponding
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factors will be matrices, and matrix multiplication is not commutative. That
is, we know that[

2 4
6 8

] [
a b

c d

]
=
[
(2a + 4c) (2b + 4d)

(6a + 8c) (6b + 8d)

]

while [
a b

c d

] [
2 4
6 8

]
=
[
(2a + 6b) (4a + 8b)

(2c + 6d) (4c + 8d)

]

Different results are obtained, and we therefore need to be careful later about
the order in which we write matrix factors.

Continuing with Eq. [37], let us integrate each side with respect to time from
−∞ to a general time t :

e−ta11q1(t) =
∫ t

−∞
e−za11f1(z) dz [38]

where z is simply a dummy variable of integration, and where we have
assumed that e−ta11q1(t) approaches zero as t approaches −∞. We now
multiply (premultiply, if this were a matrix equation) each side of Eq. [38]
by the exponential factor eta11 , obtaining

q1(t) = eta11

∫ t

−∞
e−za11f1(z) dz [39]

which is the desired expression for the single unknown state variable.

In many circuits, however, particularly those in which switches are present
and the circuit is reconfigured at some instant of time (often t = 0), we
do not know the forcing function or the normal-form equation prior to that
instant. We therefore incorporate all of the past history in an integral from
−∞ to that instant, here assumed to be t = 0, by letting t = 0 in Eq. [39]:

q1(0) =
∫ 0

−∞
e−za11f1(z) dz

We then use this initial value in the general solution for q1(t):

q1(t) = eta11q1(0)+ eta11

∫ t

0
e−za11f1(z) dz [40]

This last expression shows that the state-variable time function may be in-
terpreted as the sum of two terms. The first is the response that would arise
if the forcing function were zero [f1(t) = 0], and in the language of state-
variable analysis it is called the zero-input response. It has the form of the
natural response, although it may not have the same amplitude as the term
we have been calling the natural response. The zero-input response also is
the solution to the homogeneous normal-form equation, obtained by letting
f1(t) = 0 in Eq. [36].

The second part of the solution would represent the complete response if
q1(0) were zero, and it is termed the zero-state response. We will see in a
following example that what we have termed the forced response appears as
a part of the zero-state response.
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EXAMPLE 19.5

Find vC(t) for the circuit of Fig. 19.12.

Figure 19.12
2 �

+
–50 cos 10t u(t) V vC

+

–

0.1 F

A first-order circuit for which vC(t) is to
be found through the methods of
state-variable analysis.

The normal-form equation is easily found to be

v′C = −5vC + 250 cos 10t u(t)

Thus, a11 = −5, f1(t) = 250 cos 10t ut (t), and we may substitute directly in Eq. [39]
to obtain the solution:

vC(t) = e−5t

∫ t

−∞
e5z250 cos 10z u(z) dz

The unit-step function inside the integral may be replaced by u(t) outside the integral
if the lower limit is changed to zero:

vC(t) = e−5t u(t)

∫ t

0
e5z250 cos 10z dz

Integrating, we have

vC(t) = e−5t u(t)

[
250e5z

52 + 102
(5 cos 10z+ 10 sin 10z)

]t
0

or
vC(t) = [−10e−5t + 10(cos 10t + 2 sin 10t)]u(t) [41]

The same result may be obtained through the use of Eq. [40]. Since vC(0) = 0, we
have

vC(t) = e−5t (0)+ e−5t

∫ t

0
e5z250 cos 10z u(z) dz

= e−5t u(t)

∫ t

0
e5z250 cos 10z dz

and this leads to the same solution as before, of course. However, we also see that
the entire solution for vC(t) is the zero-state response, and there is no zero-input
response. It is interesting to note that, if we had solved this problem by the methods
of Chap. 8, we would have set up a natural response,

vC,n(t) = Ae−5t

and computed the forced response by frequency-domain methods,

VC,f = 50

2− j1
(−j1) = 10− j20
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so that
vC,f (t) = 10 cos 10t + 20 sin 10t

Thus,
vC(t) = Ae−5t + 10(cos 10t + 2 sin 10t) (t > 0)

and the application of the initial condition, vC(0) = 0, leads to A = −10 and an
expression identical to Eq. [41] once again. Looking at the partial responses obtained
in the two methods, we therefore find that

vC,zero−input = 0

vC,zero−state = [−10e−5t + 10(cos 10t + 2 sin 10t)]u(t)
vC,n = −10e−5t u(t)

vC,f = 10(cos 10t + 2 sin 10t)u(t)

EXAMPLE 19.6

The switch in the circuit of Fig. 19.13 is thrown at t = 0, and the form of the circuit
changes at that instant. Find iL(t) for t > 0.

Figure 19.13

iL

6 �3 �

t = 0

60 V0.5 H12 V

A first-order example in which the form of the circuit
changes at t = 0.

We represent everything before t = 0 by the statement that iL(0) = 4 A, and we
obtain the normal-form equation for the circuit in the configuration it has after t = 0.
It is

i ′L(t) = −4iL(t)− 24

This time, we must use Eq. [40], since we do not have a single normal-form equation
that is valid for all time. The result is

iL(t) = e−4t (4)+ e−4t

∫ t

0
e+4z(−24) dz

or
iL(t) = 4e−4t − 6(1− e−4t ) (t > 0)

The several components of the response are now identified:

iL, zero-input = 4e−4t (t > 0)

iL, zero-state = −6(1− e−4t ) (t > 0)

while our earlier analytical methods would have led to

iL,n = 10e−4t (t > 0)

iL,f = −6 (t > 0)
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These first-order networks certainly do not require the use of state variables
for their analyses. However, the method by which we solved the single
normal-form equation does offer a few clues to how the nth-order solution
might be obtained. We follow this exciting trail in the next section.

Practice
19.6. (a) Write the normal-form equation for the circuit of Fig. 19.14. Find vC(t)

for t > 0 by (b) Eq. [39]; (c) Eq. [40].

Figure 19.14

10 �

10 mF

15 � 2 A5u(t) A

vC+ –

Ans: v′C = −4vC − 120+ 200u(t); 20− 50e−4t V; 20− 50e−4t V.

19.6 The Solution of the Matrix
Equation

The general matrix equation for the nth-order system that we now wish to
solve is given as Eq. [34] in Sec. 19.4,

q′ = aq+ f [34]

where a is an (n×n) square matrix of constants and the other three matrices
are all (n× 1) column matrices whose elements are, in general, time func-
tions. In the most general case, all the matrices would be composed of time
functions.

In this section we obtain the matrix solution for this equation. In the follow-
ing section we will interpret our results and indicate how we might obtain a
useful solution for q.

We begin by subtracting the matrix product aq from each side of Eq. [34]:

q′ − aq = f [42]

Recalling our case of the integrating factor e−ta11 in the first-order case, let
us premultiply each side of Eq. [42] by e−ta:

e−taq′ − e−taaq = e−taf [43]
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Although the presence of a matrix as an exponent may seem to be somewhat
strange, the function e−ta may be defined in terms of its infinite power series
expansion in t ,

e−ta = I− ta + t2

2! (a)
2 − t3

3! (a)
3 + · · · [44]

We identify I as the (n× n) identity matrix,

I =



1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1




such that
Ia = aI = a

The products (a)2, (a)3, and so forth in Eq. [44] may be obtained by repeated
multiplication of the matrix a by itself, and therefore each term in the ex-
pansion is again an (n× n) matrix. Thus, it is apparent that e−ta is also an
(n× n) square matrix, but its elements are all functions of time in general.

Again following the first-order procedure, we would now like to show that
the left-hand side of Eq. [43] is equal to the time derivative of e−taq. Since
this is a product of two functions of time, we have

d

dt
(e−taq) = e−ta

d

dt
(q)+

[
d

dt
(e−ta)

]
q

The derivative of e−ta is obtained by again considering the infinite series of
Eq. [44], and we find that it is given by −ae−ta. The series expansion can
also be used to show that −ae−ta = −e−taa. Thus

d

dt
(e−taq) = e−taq′ − e−taaq

and Eq. [43] helps to simplify this expression into the form

d

dt
(e−taq) = e−taf

Multiplying by dt and integrating from −∞ to t , we have

e−taq =
∫ t

−∞
e−zaf(z) dz [45]

To solve for q, we must premultiply the left-hand side of Eq. [45] by the
matrix inverse of e−ta. That is, any square matrix b has an inverse b−1 such
that b−1b = bb−1 = I. In this case, another power series expansion shows
that the inverse of e−ta is eta, or

etae−taq = Iq = q

and we may therefore write our solution as

q = eta
∫ t

−∞
e−zaf(z) dz [46]
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In terms of the initial value of the state vector,

q = etaq(0)+ eta
∫ t

0
e−zaf(z) dz [47]

The function eta is a very important quantity in state-space analysis. It
is called the state-transition matrix, for it describes how the state of the
system changes from its zero state to its state at time t . Equations [46]
and [47] are the nth-order matrix equations that correspond to the first-order
results we numbered [39] and [40]. Although these expressions represent the
“solutions” for q, the fact that we express eta and e−ta only as infinite series
is a serious deterrent to our making any effective use of these results. We
would have infinite power series in t for each qi(t), and while a computer
might find this procedure compatible with its memory and computational
speed, we would probably have other, more pressing chores to handle than
carrying out the summation by ourselves.

Practice
19.7. Let a =

[
0 2
−1 1

]
and t = 0.1 s. Use the power series expansion to find the

(a) matrix e−ta; (b) matrix eta; (c) value of the determinant of e−ta;
(d) value of the determinant of eta; (e) product of the last two results.

Ans:

[
0.9903 −0.1897
0.0948 0.8955

]
;

[
0.9897 0.2097
−0.1048 1.0945

]
; 0.9048; 1.1052; 1.0000.

19.7 A Further Look at the
State-Transition Matrix

In this section we seek a more satisfactory representation for eta and e−ta. If
the system matrix a is an (n×n) square matrix, then each of these exponen-
tials is an (n×n) square matrix of time functions, and one of the consequences
of a theorem developed in linear algebra, known as the Cayley-Hamilton
theorem, shows that such a matrix may be expressed as an (n− 1)st-degree
polynomial in the matrix a. That is,

eta = u0I+ u1a + u2(a)2 + · · · + un−1(a)n−1 [48]

where each of the ui is a scalar function of time that is still to be determined;
the ai are constant (n × n) matrices. The theorem also states that Eq. [48]
remains an equality if I is replaced by unity and a is replaced by any one of
the scalar roots si of the nth-degree scalar equation,

det(a − sI) = 0 [49]

The expression det(a− sI) indicates the determinant of the matrix (a− sI).
This determinant is an nth-degree polynomial in s. We assume that the n
roots are all different. Equation [49] is called the characteristic equation
of the matrix a, and the values of s which are the roots of the equation are
known as the eigenvalues of a.

These values of s are identical with the natural frequencies that we dealt
with in Chap. 15 as poles of an appropriate transfer function. That is, if our
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state variable is vC1(t), then the poles of H(s) = VC1(s)/Is or of VC1(s)/Vs

are also the eigenvalues of the characteristic equation.

Thus, this is the procedure we shall follow to obtain a simpler form for eta:

1. Given a, form the matrix (a − sI).
2. Set the determinant of this square matrix equal to zero.

3. Solve the resultant nth-degree polynomial for its n roots, s1, s2, . . . , sn.

4. Write the n scalar equations of the form

etsi = u0 + u1si + · · · + un−1s
n−1
i [50]

5. Solve for the n time functions u0, u1, . . . , un−1.

6. Substitute these time functions in Eq. [48] to obtain the (n× n) matrix eta .

To illustrate this procedure, let us use the system matrix that corresponds to
Eqs. [7] and [8] of Sec. 19.2 and to the circuit shown in Fig. 19.2a.

a =
[ −0.5 −2.5

0.5 −3.5

]

Therefore,

(a − sI) =
[ −0.5 −2.5

0.5 −3.5

]
− s

[
1 0
0 1

]

=
[
(−0.5− s) −2.5

0.5 (−3.5− s)

]

and the expansion of the corresponding (2× 2) determinant gives

det

[
(−0.5− s) −2.5

0.5 (−3.5− s)

]
=
∣∣∣∣∣ (−0.5− s) −2.5

0.5 (−3.5− s)

∣∣∣∣∣
= (−0.5− s)(−3.5− s)+ 1.25

so that
det(a − sI) = s2 + 4s + 3

The roots of this polynomial are s1 = −1 and s2 = −3, and we substitute
each of these values in Eq. [50], obtaining the two equations

e−t = u0 − u1 and e−3t = u0 − 3u1

Subtracting, we find that

u1 = 0.5e−t − 0.5e−3t

and, therefore,
u0 = 1.5e−t − 0.5e−3t

Note that each ui has the general form of the natural response.
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When these two functions are installed in Eq. [48], so that

eta = (1.5e−t − 0.5e−3t )I+ (0.5e−t − 0.5e−3t )

[ −0.5 −2.5
0.5 −3.5

]

we may carry out the indicated operations to find

eta =
[
(1.25e−t − 0.25e−3t ) (−1.25e−t + 1.25e−3t )

(0.25e−t − 0.25e−3t ) (−0.25e−t + 1.25e−3t )

]
[51]

Having eta, we form e−ta by replacing each t in Eq. [51] by−t . To complete
this example, we may identify q and f from Eqs. [7], [8], and [9]:

q =
[
vC

iL

]

f =
[

30+ 8e−2t u(t)

0

]
[52]

Since part of the forcing-function vector is present for t < 0, we may as
well use Eq. [46] to solve for the state vector:

q = eta
∫ t

−∞
e−zaf(z) dz [46]

The matrix product e−zaf(z) is next formed by replacing t by−z in Eq. [51]
and then postmultiplying by Eq. [52] with z replacing t . With only moderate
labor, we find that

e−zaf =
[

37.5ez − 7.5e3z + (10e−z − 2ez)u(z)

7.5ez − 7.5e3z + (2e−z − 2ez)u(z)

]

Integrating the first two terms of each element from −∞ to t and the last
two terms from 0 to t , we have

∫ t

−∞
e−zaf dz =

[
35.5et − 2.5e3t − 10e−t + 12

5.5et − 2.5e3t − 2e−t + 4

]
(t > 0)

Finally, we must premultiply this matrix by Eq. [51] and this matrix mul-
tiplication involves a large number of scalar multiplications and algebraic
additions of like time functions. The result is the desired state vector

q =
[

35+ 10e−t − 12e−2t + 2e−3t

5+ 2e−t − 4e−2t + 2e−3t

]
(t > 0)

These are the expressions that were given offhandedly in Eqs. [10] and [11]
at the end of Sec. 19.2.

We now have a general technique that we could apply to higher-order prob-
lems. Such a procedure is theoretically possible, but the labor involved soon
becomes monumental. Instead, we utilize computer programs that work
directly from the normal-form equations and the initial values of the state
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variables. Knowing q(0), we compute f(0) and solve the equations for q′(0).
Then q(�t) may be approximated from the initial value and its derivative:
q(�t) .= q(0)+q′(0)�t . With this value for q(�t), the normal-form equa-
tions are used to determine a value for q′(�t), and the process moves along
by time increments of�t . Smaller values for�t lead to greater accuracy for
q(t) at any time t > 0, but with attendant penalties in computational time
and computer storage requirements.

We accomplished several things in this chapter. First, and perhaps most im-
portant, we have learned some of the terms and ideas of this branch of system
analysis, and this should make future study of this field more meaningful
and pleasurable.

Another accomplishment is the general solution for the first-order case in
matrix form.

We have also obtained the matrix solution for the general case. This intro-
duction to the use of matrices in circuit and system analysis is a tool which
becomes increasingly necessary in more advanced work in these areas.

Finally, we have indicated how a numerical solution might be obtained using
numerical methods, hopefully by a digital computer.

Practice
19.8. Given q =

[
vC

iL

]
, a =

[
0 −27
1
3 −10

]
, f =

[
243u(t)

40u(t)

]
, and q(0) =

[
150

5

]
,

use a�t of 0.001 s and calculate: (a) vC(0.001); (b) iL(0.001); (c) v′C(0.001);
(d) i ′L(0.001); (e) vC(0.002); (f ) iL(0.002).

Ans: 150.108 V; 5.04 A; 106.92 V/s; 39.636 A/s; 150.2149 V; 5.0796 A.

19.8 Summary and Review
■ The term state variable in circuit analysis refers to either an inductor

current or a capacitor voltage, as they can be used to describe the
energy state of a system (i.e., a circuit).

■ The six steps for constructing a set of equations for state-variable
analysis are:

1. Establish a normal tree.

2. Assign voltage and current variables.

3. Write the C equations.

4. Write the L equations.

5. Write the R equations (if necessary).

6. Write the normal-form equations.

■ The state vector is a matrix which contains the state variables qi .

■ The forcing-function matrix is a matrix which contains the set of
forcing functions fi .

■ The system matrix a contains the coefficients aij of the state equations.
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■ If we write the first-order matrix equation representation of the set of
normal-form state variable equations as q′ = aq+ f , the single
unknown state variable q1(t) is given as the sum of the zero-input
response eta11q1(0) and the zero-state response eta11

∫ t
0 e
−za11f1(z) dz.

■ The general solution to the matrix equation, expressed in terms of the
state-transition matrix eta, is q = eta

∫ t
−∞ e

−zaf(z) dz.

Exercises
19.2 State Variables and Normal-Form Equations

1. Using the order i1, i2, i3, write the following equations as a set of normal-form
equations: −2i ′1−6i ′3 = 5+2 cos 10t−3i1+2i2, 4i2 = 0.05i ′1−0.15i ′2+0.25i ′3,
i2 = −2i1 − 5i3 + 0.4

∫ t
0 (i1 − i3) dt + 8.

2. Given the two linear differential equations x ′ + y ′ = x + y + 1 and x ′ − 2y ′ =
2x − y − 1: (a) write the two normal-form equations, using the order x, y;
(b) obtain a single differential equation involving only x(t) and its derivatives.
(c) If x(0) = 2 and y(0) = −5, find x ′(0), x ′′(0), and x ′′′(0).

3. Write the following equations in normal form, using the order x, y, z: x ′ −2y−
3z′ = f1(t), 2x ′ + 5z = 3, z′ − 2y ′ − x = 0.

4. If x ′ = −2x − 3y + 4 and y ′ = 5x − 6y + 7, let x(0) = 2 and y(0) = 1
3 , and

find: (a) x ′′(0); (b) y ′′(0); (c) y ′′′(0).

19.3 Writing a Set of Normal-Form Equations

5. If vs = 100 cos 120πt V, write a set of normal-form equations for the circuit
shown in Fig. 19.15. Use iL and vC as the state variables.

Figure 19.15

60 �

0.2 Hvx+ –

vC

+

–

vs

iL
+
–

0.04vx5 �F

6. (a)Draw a normal tree for the circuit of Fig. 19.16 and assign the necessary state
variables (for uniformity, put + references at the top or left side of an element,
and direct arrows down or to the right). (b) Specify every link current and
tree-branch voltage in terms of the sources, element values, and state variables.
(c) Write the normal-form equations using the order iL, vx , v2F.

Figure 19.16

3 F

6 �

4 �

8u(t) V

vx+ –

+
– 2vx

5 H

2 F
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7. Write a set of normal-form equations for each circuit shown in Fig. 19.17. Use
the state-variable order given below the circuit.

Figure 19.17

15 �2 mH

vC

+

–

iL

3iA0.2 mF
+
–

iA

50 �is

iL, vC

(a)

25 �10 �5 �

0.2 F 0.5 F0.1 F
+
–

vs

(b)

v3

+

–

v2

+

–

v1

+

–

v1, v2, v3

8. A 12.5-� resistor is placed in series with the 0.2-mF capacitor in the circuit of
Fig. 19.17a. Using one current and one voltage, in that order, write a set of
normal-form equations for this circuit.

9. (a) Write normal-form equations in the state variables v1, v2, i1, and i2 for
Fig. 19.18. (b) Repeat if the current source is replaced with a 3-� resistor.

Figure 19.18

+
–

vs

v1 +– v2+ –

i1

i2

2 �

0.5 H

0.05 H

0.1 F 0.2 F

is
10. Write a set of normal-form equations in the order iL, vC for each circuit shown

in Fig. 19.19.

Figure 19.19

is

vC+ –

0.1 F

0.2 H20 Ω

iL

(a)

vC

+

–

+
–

vs 0.2 F

0.5 H

5 Ω

2 Ω iL

(b)

11. Write a set of normal-form equations for the circuit shown in Fig. 19.20. Use
the variable order v, i.

Figure 19.20

i

20 Ω 5 Ω0.2 H

0.1 F

isis

v+ –

Figure 19.21

ix

5 Ω 20 Ω

0.05 F0.1 F

+
–

4ix
+
–

vs

12. If vs = 5 sin 2t u(t) V, write a set of normal-form equations for the circuit of
Fig. 19.21.
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19.4 The Use of Matrix Notation

13. (a) Given q =



iL1

iL2

vC


, a =


 −1 −2 −3

4 −5 6
7 −8 −9


, and f =


 2t

3t2

1+ t


, write

out the three normal-form equations. (b) If q =
[

iL

vC

]
, a =

[
0 −6
4 0

]
, and

f =
[

1
0

]
, show the state variables and the elements (with their values) on the

skeleton circuit diagram of Fig. 19.22.

Figure 19.22

14. Replace the capacitors in the circuit of Fig. 19.17b by 0.1-H, 0.2-H, and 0.5-H
inductors and find a and f if iL1, iL2, and iL3 are the state variables.

15. Given the state vector q =

 vC1

vC2

iL


, let the system matrix a =


−3 3 0

2 −1 0
1 4 −2


,

and the forcing function vector f =

 10

0
0


. Other voltages and currents in the

circuit appear in the vector w =



vo1
vo2

iR1

iR2


, and they are related to the state vector

by w = bq + d, where b =



1 2 0
0 0 −1
0 −1 2
1 3 0


 and d =




0
2
−2

0


. Write out the

set of equations giving v′o1, v′o2, i ′R1, and i ′R2 as functions of the state variables.

16. Let q =

 q1

q2

q3


, a =


 −3 1 2
−2 −2 1
−1 3 0


, f =


 cos 2πt

sin 2πt
0


, y =




y1

y2

y3

y3


, b =


 1 2 0 3

0 −1 1 1
2 −1 −1 3


, and d =


 2

1
3


. Then if q′ = aq + f and q = by + d,

determine q(0) and q′(0) if y(0) =



10
−10
−5

5


.

19.5 Solution of the First-Order Equation

17. Find a and f for the circuit shown in Fig. 19.23 if q =
[

vC

iL

]
.

Figure 19.23

+ –

18 Ω

3 Ω

6 Ω

9 ΩvC

+

–

vs

is

iL

4 F2 H

Figure 19.24

50 Ω10 Ω i

t = 0

30 V 2 H

18. For the circuit shown in Fig. 19.24: (a) write the normal-form equation for i,
t > 0; (b) solve this equation for i; (c) identify the zero-state and zero-input
responses; (d) find i by the methods of Chap. 8 and specify the natural and
forced responses.
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19. Let vs = 2tu(t) V in the circuit shown in Fig. 19.25. Find i2(t).

Figure 19.25

vs 50 �F 200 Ω

50 Ω

i2

+
–

Figure 19.26

iL

10 Ω 0.3 H

100 V
5 Ω

5u(t) A

20. (a) Use state-variable methods to find iL(t) for all t in the circuit shown in
Fig. 19.26. (b) Identify the zero-input, zero-state, natural, and forced responses.

21. Let vs = 100[u(t)− u(t − 0.5)] cosπt V in Fig. 19.27. Find vC for t > 0.

Figure 19.27

vs 0.01 F200 Ω

50 Ω

+
–

vC

+

–

22. (a) Write the normal-form equation for the circuit shown in Fig. 19.28. (b)

Find v(t) for t < 0 and t > 0. (c) Identify the forced response, the natural
response, the zero-state response, and the zero-input response.

Figure 19.28

20 Ω 5 Ω 25 mF

+–

v

+

–

10u(t) A

100 V

23. Let vs = 90e−t [u(t)− u(t − 0.5)] V in the circuit of Fig. 19.29. Find iL(t).

Figure 19.29

15 H90 Ω

45 Ω

iL

+
–

vs

19.6 The Solution of the Matrix Equation

24. Given the system matrix a =
[ −8 5

10 −10

]
, let t = 10 ms and use the infinite

power series for the exponential to find (a) e−ta; (b) eta; (c) e−taeta.

19.7 A Further Look at the State-TransitionMatrix

25. (a) If q =

 x

y

z


, f =


 u(t)

cos t
−u(t)


, and a =


 1 2 −1

0 −1 3
−2 −3 −1


, write the

set of normal-form equations. (b) If q(0) =

 2
−3

1


, estimate q(0.1) using

�t = 0.1. (c) Repeat for �t = 0.05.
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26. Determine the eigenvalues of the matrix a =

 −1 2 3

0 −1 2
3 1 −1


. As a help,

one root is near s = −3.5.

27. Using the method described by Eqs. [48] to [50], find eta if a =
[ −3 2

1 −4

]
.

28. (a) Find the normal-form equations for the circuit of Fig. 19.30. Let q =
[

i
v

]
.

(b) Find the eigenvalues of a. (c) Determine u0 and u1. (d) Specify eta.
(e) Use eta to find q for t > 0.

Figure 19.30

9 Ω v

+

–

+
–

i

36 – 72u(t) V

10 H

F1
90


